Add the transformerLM

pull/925/head
huangyuxin 4 years ago
parent 4e7f5a8b7b
commit e9219dea06

@ -135,13 +135,13 @@ class TextFeaturizer():
"""Character detokenizer.
Args:
tokens (str): tokens.
tokens (List[str]): tokens.
Returns:
str: text string.
"""
tokens = tokens.replace(SPACE, " ")
return tokens
tokens = [t.replace(SPACE, " ") for t in tokens]
return "".join(tokens)
def word_tokenize(self, text):
"""Word tokenizer, separate by <space>."""

@ -0,0 +1,169 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
from typing import List
from typing import Tuple
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from deepspeech.modules.encoder import TransformerEncoder
class TransformerLM(nn.Layer):
def __init__(
self,
vocab_size: int,
pos_enc: str=None,
embed_unit: int=128,
att_unit: int=256,
head: int=2,
unit: int=1024,
layer: int=4,
dropout_rate: float=0.5, ):
super().__init__()
if pos_enc == "sinusoidal":
pos_enc_layer_type = "abs_pos"
elif pos_enc is None:
#TODO
raise ValueError(f"unknown pos-enc option: {pos_enc}")
else:
raise ValueError(f"unknown pos-enc option: {pos_enc}")
self.embed = nn.Embedding(vocab_size, embed_unit)
self.encoder = TransformerEncoder(
input_size=embed_unit,
output_size=att_unit,
attention_heads=head,
linear_units=unit,
num_blocks=layer,
dropout_rate=dropout_rate,
input_layer="linear",
pos_enc_layer_type=pos_enc_layer_type,
concat_after=False,
static_chunk_size=1,
use_dynamic_chunk=False,
use_dynamic_left_chunk=True, )
self.decoder = nn.Linear(att_unit, vocab_size)
self.load_parameters()
def load_parameters(self):
model_dict = paddle.load("transformerLM.pdparams")
self.set_state_dict(model_dict)
def _target_len(self, ys_in_pad):
ys_len_tmp = paddle.where(
paddle.to_tensor(ys_in_pad != 0),
paddle.ones_like(ys_in_pad), paddle.zeros_like(ys_in_pad))
ys_len = paddle.sum(ys_len_tmp, axis=-1)
return ys_len
def forward(self, input: paddle.Tensor,
hidden: None) -> Tuple[paddle.Tensor, None]:
x = self.embed(input)
x_len = self._target_len(input)
h, _ = self.encoder(x, x_len)
y = self.decoder(h)
return y, None
def score(
self,
y: paddle.Tensor,
state: Any,
x: paddle.Tensor, ) -> Tuple[paddle.Tensor, Any]:
# y, the chunk input
y = y.unsqueeze(0)
offset = 0
subsampling_cache = None
conformer_cnn_cache = None
elayers_output_cache = state
required_cache_size = -1
y = self.embed(y)
h, r_subsampling_cache, r_elayers_output_cache, r_conformer_cnn_cache = self.encoder.forward_chunk(
y, offset, required_cache_size, subsampling_cache,
elayers_output_cache, conformer_cnn_cache)
h = self.decoder(h[:, -1])
logp = F.log_softmax(h).squeeze(0)
return h, r_elayers_output_cache
def batch_score(self,
ys: paddle.Tensor,
states: List[Any],
xs: paddle.Tensor) -> Tuple[paddle.Tensor, List[Any]]:
n_batch = ys.shape[0]
n_layers = len(self.encoder.encoders)
hs = []
new_states = []
for i in range(n_batch):
y = ys[i:i + 1, :]
state = states[i]
offset = 0
subsampling_cache = None
conformer_cnn_cache = None
elayers_output_cache = state
required_cache_size = -1
y = self.embed(y)
h, r_subsampling_cache, r_elayers_output_cache, r_conformer_cnn_cache = self.encoder.forward_chunk(
y, offset, required_cache_size, subsampling_cache,
elayers_output_cache, conformer_cnn_cache)
h = self.decoder(h[:, -1])
hs.append(h)
new_states.append(r_elayers_output_cache)
hs = paddle.concat(hs, axis=0)
hs = F.log_softmax(hs)
return hs, new_states
if __name__ == "__main__":
tlm = TransformerLM(
vocab_size=5002,
pos_enc='sinusoidal',
embed_unit=128,
att_unit=512,
head=8,
unit=2048,
layer=16,
dropout_rate=0.5, )
paddle.set_device("cpu")
tlm.eval()
"""
input2 = np.array([5])
input2 = paddle.to_tensor(input2)
output, cache =tlm.score(input2, None, None)
input3 = np.array([5, 10])
input3 = paddle.to_tensor(input3)
output, cache = tlm.score(input3, cache, None)
input4 = np.array([5, 10, 7])
input4 = paddle.to_tensor(input4)
output, cache = tlm.score(input4, cache, None)
print ("output", output)
"""
inp2 = np.array([[5], [10]])
inp2 = paddle.to_tensor(inp2)
output, cache = tlm.batch_score(inp2, [None] * 4, None)
inp3 = np.array([[5, 100], [10, 30]])
inp3 = paddle.to_tensor(inp3)
output, cache = tlm.batch_score(inp3, cache, None)
print("output", output)
print("cache", cache)
#np.save("output_pd.npy", output)

@ -60,7 +60,8 @@ class LinearNoSubsampling(BaseSubsampling):
self.out = nn.Sequential(
nn.Linear(idim, odim),
nn.LayerNorm(odim, epsilon=1e-12),
nn.Dropout(dropout_rate), )
nn.Dropout(dropout_rate),
nn.ReLU(), )
self.right_context = 0
self.subsampling_rate = 1

Loading…
Cancel
Save