fix tiny and local script, test=asr

pull/1997/head
huangyuxin 3 years ago
parent 47dd61e5b2
commit e48e1d5e81

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: $0 config_path ckpt_prefix jit_model_path model_type"
if [ $# != 3 ];then
echo "usage: $0 config_path ckpt_prefix jit_model_path"
exit -1
fi
@ -11,14 +11,12 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_path_prefix=$2
jit_model_export_path=$3
model_type=$4
python3 -u ${BIN_DIR}/export.py \
--ngpu ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
--export_path ${jit_model_export_path} \
--model_type ${model_type}
--export_path ${jit_model_export_path}
if [ $? -ne 0 ]; then
echo "Failed in export!"

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -13,7 +13,6 @@ echo "using $ngpu gpus..."
config_path=$1
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_ch.sh
@ -23,7 +22,7 @@ fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# format the reference test file
python utils/format_rsl.py \
python3 utils/format_rsl.py \
--origin_ref data/manifest.test.raw \
--trans_ref data/manifest.test.text
@ -32,8 +31,7 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}
--checkpoint_path ${ckpt_prefix}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
@ -41,25 +39,25 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
fi
# format the hyp file
python utils/format_rsl.py \
python3 utils/format_rsl.py \
--origin_hyp ${ckpt_prefix}.rsl \
--trans_hyp ${ckpt_prefix}.rsl.text
python utils/compute-wer.py --char=1 --v=1 \
data/manifest.test.text ${ckpt_prefix}.rsl.text > ${ckpt_prefix}.error
python3 utils/compute-wer.py --char=1 --v=1 \
data/manifest.test.text ${ckpt_prefix}.rsl.text > ${ckpt_prefix}.error
fi
if [ ${stage} -le 101 ] && [ ${stop_stage} -ge 101 ]; then
python utils/format_rsl.py \
python3 utils/format_rsl.py \
--origin_ref data/manifest.test.raw \
--trans_ref_sclite data/manifest.test.text.sclite
python utils/format_rsl.py \
--origin_hyp ${ckpt_prefix}.rsl \
--trans_hyp_sclite ${ckpt_prefix}.rsl.text.sclite
python3 utils/format_rsl.py \
--origin_hyp ${ckpt_prefix}.rsl \
--trans_hyp_sclite ${ckpt_prefix}.rsl.text.sclite
mkdir -p ${ckpt_prefix}_sclite
sclite -i wsj -r data/manifest.test.text.sclite -h ${ckpt_prefix}.rsl.text.sclite -e utf-8 -o all -O ${ckpt_prefix}_sclite -c NOASCII
mkdir -p ${ckpt_prefix}_sclite
sclite -i wsj -r data/manifest.test.text.sclite -h ${ckpt_prefix}.rsl.text.sclite -e utf-8 -o all -O ${ckpt_prefix}_sclite -c NOASCII
fi
exit 0

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -11,7 +11,6 @@ echo "using $ngpu gpus..."
config_path=$1
decode_config_path=$2
jit_model_export_path=$3
model_type=$4
# download language model
bash local/download_lm_ch.sh > /dev/null 2>&1
@ -24,8 +23,7 @@ python3 -u ${BIN_DIR}/test_export.py \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${jit_model_export_path}.rsl \
--export_path ${jit_model_export_path} \
--model_type ${model_type}
--export_path ${jit_model_export_path}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 5 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type audio_file"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix audio_file"
exit -1
fi
@ -11,8 +11,7 @@ echo "using $ngpu gpus..."
config_path=$1
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
audio_file=$5
audio_file=$4
mkdir -p data
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/zh/demo_01_03.wav -P data/
@ -37,7 +36,6 @@ python3 -u ${BIN_DIR}/test_wav.py \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type} \
--audio_file ${audio_file}
if [ $? -ne 0 ]; then

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name model_type"
if [ $# != 2 ];then
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name"
exit -1
fi
@ -10,7 +10,6 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_name=$2
model_type=$3
mkdir -p exp
@ -25,14 +24,12 @@ python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--seed ${seed}
else
python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--seed ${seed}
fi

@ -24,7 +24,7 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt} ${model_type}
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt}
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
@ -34,21 +34,21 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}|| exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}
CUDA_VISIBLE_DEVICES=0 ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# test export ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test_export.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_export.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}.jit|| exit -1
fi
# Optionally, you can add LM and test it with runtime.
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${audio_file} || exit -1
fi

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: $0 config_path ckpt_prefix jit_model_path model_type"
if [ $# != 3 ];then
echo "usage: $0 config_path ckpt_prefix jit_model_path"
exit -1
fi
@ -11,14 +11,12 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_path_prefix=$2
jit_model_export_path=$3
model_type=$4
python3 -u ${BIN_DIR}/export.py \
--ngpu ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
--export_path ${jit_model_export_path} \
--model_type ${model_type}
--export_path ${jit_model_export_path}
if [ $? -ne 0 ]; then
echo "Failed in export!"

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
stage=0
@ -13,7 +13,6 @@ echo "using $ngpu gpus..."
config_path=$1
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_en.sh
@ -23,7 +22,7 @@ fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# format the reference test file
python utils/format_rsl.py \
python3 utils/format_rsl.py \
--origin_ref data/manifest.test-clean.raw \
--trans_ref data/manifest.test-clean.text
@ -32,33 +31,32 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}
--checkpoint_path ${ckpt_prefix}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
python utils/format_rsl.py \
python3 utils/format_rsl.py \
--origin_hyp ${ckpt_prefix}.rsl \
--trans_hyp ${ckpt_prefix}.rsl.text
python utils/compute-wer.py --char=1 --v=1 \
python3 utils/compute-wer.py --char=1 --v=1 \
data/manifest.test-clean.text ${ckpt_prefix}.rsl.text > ${ckpt_prefix}.error
fi
if [ ${stage} -le 101 ] && [ ${stop_stage} -ge 101 ]; then
python utils/format_rsl.py \
python3 utils/format_rsl.py \
--origin_ref data/manifest.test-clean.raw \
--trans_ref_sclite data/manifest.test.text-clean.sclite
python utils/format_rsl.py \
--origin_hyp ${ckpt_prefix}.rsl \
--trans_hyp_sclite ${ckpt_prefix}.rsl.text.sclite
python3 utils/format_rsl.py \
--origin_hyp ${ckpt_prefix}.rsl \
--trans_hyp_sclite ${ckpt_prefix}.rsl.text.sclite
mkdir -p ${ckpt_prefix}_sclite
sclite -i wsj -r data/manifest.test-clean.text.sclite -h ${ckpt_prefix}.rsl.text.sclite -e utf-8 -o all -O ${ckpt_prefix}_sclite -c NOASCII
mkdir -p ${ckpt_prefix}_sclite
sclite -i wsj -r data/manifest.test-clean.text.sclite -h ${ckpt_prefix}.rsl.text.sclite -e utf-8 -o all -O ${ckpt_prefix}_sclite -c NOASCII
fi

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 5 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type audio_file"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix audio_file"
exit -1
fi
@ -11,8 +11,7 @@ echo "using $ngpu gpus..."
config_path=$1
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
audio_file=$5
audio_file=$4
mkdir -p data
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/en/demo_002_en.wav -P data/
@ -37,7 +36,6 @@ python3 -u ${BIN_DIR}/test_wav.py \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type} \
--audio_file ${audio_file}
if [ $? -ne 0 ]; then

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name model_type"
if [ $# != 2 ];then
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name"
exit -1
fi
@ -10,7 +10,6 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_name=$2
model_type=$3
mkdir -p exp
@ -25,14 +24,12 @@ python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--seed ${seed}
else
python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--seed ${seed}
fi

@ -23,7 +23,7 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt} ${model_type}
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt}
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
@ -33,20 +33,20 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}|| exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES= ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}
CUDA_VISIBLE_DEVICES= ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# test export ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test_export.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_export.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}.jit|| exit -1
fi
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${audio_file} || exit -1
fi

@ -1,36 +0,0 @@
[
{
"type": "speed",
"params": {
"min_speed_rate": 0.9,
"max_speed_rate": 1.1,
"num_rates": 3
},
"prob": 0.0
},
{
"type": "shift",
"params": {
"min_shift_ms": -5,
"max_shift_ms": 5
},
"prob": 1.0
},
{
"type": "specaug",
"params": {
"W": 5,
"warp_mode": "PIL",
"F": 30,
"n_freq_masks": 2,
"T": 40,
"n_time_masks": 2,
"p": 1.0,
"adaptive_number_ratio": 0,
"adaptive_size_ratio": 0,
"max_n_time_masks": 20,
"replace_with_zero": true
},
"prob": 1.0
}
]

@ -16,28 +16,26 @@ max_output_input_ratio: 10.0
###########################################
# Dataloader #
###########################################
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
vocab_filepath: data/lang_char/vocab.txt
spm_model_prefix: ''
unit_type: 'char'
preprocess_config: conf/preprocess.yaml
feat_dim: 161
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 4
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 8
subsampling_factor: 1
num_encs: 1
############################################
# Network Architecture #
@ -45,8 +43,10 @@ batch_size: 4
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
rnn_direction: bidirect # [forward, bidirect]
num_fc_layers: 0
fc_layers_size_list: -1,
use_gru: False
share_rnn_weights: True
blank_id: 0
@ -59,6 +59,7 @@ lr: 1.0e-5
lr_decay: 0.8
weight_decay: 1.0e-6
global_grad_clip: 5.0
dist_sampler: False
log_interval: 1
checkpoint:
kbest_n: 3

@ -16,29 +16,27 @@ max_output_input_ratio: 10.0
###########################################
# Dataloader #
###########################################
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
vocab_filepath: data/lang_char/vocab.txt
spm_model_prefix: ''
unit_type: 'char'
preprocess_config: conf/preprocess.yaml
feat_dim: 161
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 4
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 8
subsampling_factor: 1
num_encs: 1
############################################
# Network Architecture #
############################################
@ -61,6 +59,7 @@ lr: 1.0e-5
lr_decay: 1.0
weight_decay: 1.0e-6
global_grad_clip: 5.0
dist_sampler: False
log_interval: 1
checkpoint:
kbest_n: 3

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: $0 config_path ckpt_prefix jit_model_path model_type"
if [ $# != 3 ];then
echo "usage: $0 config_path ckpt_prefix jit_model_path"
exit -1
fi
@ -11,14 +11,12 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_path_prefix=$2
jit_model_export_path=$3
model_type=$4
python3 -u ${BIN_DIR}/export.py \
--ngpu ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
--export_path ${jit_model_export_path} \
--model_type ${model_type}
--export_path ${jit_model_export_path}
if [ $? -ne 0 ]; then
echo "Failed in export!"

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -11,7 +11,6 @@ echo "using $ngpu gpus..."
config_path=$1
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_en.sh
@ -24,8 +23,7 @@ python3 -u ${BIN_DIR}/test.py \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}
--checkpoint_path ${ckpt_prefix}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"

@ -15,14 +15,13 @@ if [ ${seed} != 0 ]; then
echo "using seed $seed & FLAGS_cudnn_deterministic=True ..."
fi
if [ $# != 3 ];then
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name model_type"
if [ $# != 2 ];then
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name"
exit -1
fi
config_path=$1
ckpt_name=$2
model_type=$3
mkdir -p exp
@ -31,7 +30,6 @@ python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--profiler-options "${profiler_options}" \
--seed ${seed}
else
@ -39,7 +37,6 @@ python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/t
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--profiler-options "${profiler_options}" \
--seed ${seed}
fi

@ -8,8 +8,6 @@ stop_stage=100
conf_path=conf/deepspeech2.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
model_type=offline
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
avg_ckpt=avg_${avg_num}
@ -23,7 +21,7 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt} ${model_type}
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt}
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
@ -33,10 +31,10 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}|| exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}
CUDA_VISIBLE_DEVICES=${gpus} ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
fi

@ -248,7 +248,6 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
for text, n in zip(texts, texts_len):
n = n.numpy().item()
ids = text[:n]
#trans.append(''.join([chr(i) for i in ids]))
trans.append(self._text_featurizer.defeaturize(ids.numpy().tolist()))
return trans

Loading…
Cancel
Save