Merge branch 'PaddlePaddle:develop' into develop

pull/2932/head
HuangLiangJie 3 years ago committed by GitHub
commit e483808c6e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -989,6 +989,7 @@ You are warmly welcome to submit questions in [discussions](https://github.com/P
- Many thanks to [heyudage](https://github.com/heyudage)/[VoiceTyping](https://github.com/heyudage/VoiceTyping) for the real-time voice typing tool implementation of PaddleSpeech ASR streaming services. - Many thanks to [heyudage](https://github.com/heyudage)/[VoiceTyping](https://github.com/heyudage/VoiceTyping) for the real-time voice typing tool implementation of PaddleSpeech ASR streaming services.
- Many thanks to [EscaticZheng](https://github.com/EscaticZheng)/[ps3.9wheel-install](https://github.com/EscaticZheng/ps3.9wheel-install) for the python3.9 prebuilt wheel for PaddleSpeech installation in Windows without Viusal Studio. - Many thanks to [EscaticZheng](https://github.com/EscaticZheng)/[ps3.9wheel-install](https://github.com/EscaticZheng/ps3.9wheel-install) for the python3.9 prebuilt wheel for PaddleSpeech installation in Windows without Viusal Studio.
Besides, PaddleSpeech depends on a lot of open source repositories. See [references](./docs/source/reference.md) for more information. Besides, PaddleSpeech depends on a lot of open source repositories. See [references](./docs/source/reference.md) for more information.
- Many thanks to [chinobing](https://github.com/chinobing)/[FastAPI-PaddleSpeech-Audio-To-Text](https://github.com/chinobing/FastAPI-PaddleSpeech-Audio-To-Text) for converting audio to text based on FastAPI and PaddleSpeech.
<a name="License"></a> <a name="License"></a>
## License ## License

@ -992,6 +992,7 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
- 非常感谢 [chenkui164](https://github.com/chenkui164)/[FastASR](https://github.com/chenkui164/FastASR) 对 PaddleSpeech 的 ASR 进行 C++ 推理实现。 - 非常感谢 [chenkui164](https://github.com/chenkui164)/[FastASR](https://github.com/chenkui164/FastASR) 对 PaddleSpeech 的 ASR 进行 C++ 推理实现。
- 非常感谢 [heyudage](https://github.com/heyudage)/[VoiceTyping](https://github.com/heyudage/VoiceTyping) 基于 PaddleSpeech 的 ASR 流式服务实现的实时语音输入法工具。 - 非常感谢 [heyudage](https://github.com/heyudage)/[VoiceTyping](https://github.com/heyudage/VoiceTyping) 基于 PaddleSpeech 的 ASR 流式服务实现的实时语音输入法工具。
- 非常感谢 [EscaticZheng](https://github.com/EscaticZheng)/[ps3.9wheel-install](https://github.com/EscaticZheng/ps3.9wheel-install) 对PaddleSpeech在Windows下的安装提供了无需Visua Studio基于python3.9的预编译依赖安装包。 - 非常感谢 [EscaticZheng](https://github.com/EscaticZheng)/[ps3.9wheel-install](https://github.com/EscaticZheng/ps3.9wheel-install) 对PaddleSpeech在Windows下的安装提供了无需Visua Studio基于python3.9的预编译依赖安装包。
- 非常感谢 [chinobing](https://github.com/chinobing)/[FastAPI-PaddleSpeech-Audio-To-Text](https://github.com/chinobing/FastAPI-PaddleSpeech-Audio-To-Text) 利用 FastAPI 实现 PaddleSpeech 语音转文字,文件上传、分割、转换进度显示、后台更新任务并以 csv 格式输出。
此外PaddleSpeech 依赖于许多开源存储库。有关更多信息,请参阅 [references](./docs/source/reference.md)。 此外PaddleSpeech 依赖于许多开源存储库。有关更多信息,请参阅 [references](./docs/source/reference.md)。

@ -0,0 +1,77 @@
# FastSpeech2 with Cantonese language
## Dataset
### Download and Extract
If you don't have the Cantonese datasets mentioned above, please download and unzip [Guangzhou_Cantonese_Scripted_Speech_Corpus_Daily_Use_Sentence](https://magichub.com/datasets/guangzhou-cantonese-scripted-speech-corpus-daily-use-sentence/) and [Guangzhou_Cantonese_Scripted_Speech_Corpus_in_Vehicle](https://magichub.com/datasets/guangzhou-cantonese-scripted-speech-corpus-in-the-vehicle/) under `~/datasets/`.
To obtain better performance, please combine these two datasets together as follows:
```bash
mkdir -p ~/datasets/canton_all/WAV
cp -r ~/datasets/Guangzhou_Cantonese_Scripted_Speech_Corpus_Daily_Use_Sentence/WAV/* ~/datasets/canton_all/WAV
cp -r ~/datasets/Guangzhou_Cantonese_Scripted_Speech_Corpus_in_Vehicle/WAV/* ~/datasets/canton_all/WAV
```
After that, it should be look like:
```
~/datasets/canton_all
│ └── WAV
│ └──G0001
│ └──G0002
│ ...
│ └──G0071
│ └──G0072
```
### Get MFA Result and Extract
We use [MFA1.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for canton_fastspeech2.
You can train your MFA model reference to [canton_mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo.
We here provide the MFA results of these two datasets. [canton_alignment.zip](https://paddlespeech.bj.bcebos.com/MFA/Canton/canton_alignment.zip)
## Get Started
Assume the path to the Cantonese MFA result of the two datsets mentioned above is `./canton_alignment`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
- synthesize waveform from text file.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── energy_stats.npy
├── norm
├── pitch_stats.npy
├── raw
└── speech_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech、pitch and energy features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, the path of pitch features, a path of energy features, speaker, and id of each utterance.
### Training details can refer to the script of [examples/aishell3/tts3](../../aishell3/tts3).
## Pretrained Model

@ -0,0 +1,107 @@
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 24000 # sr
n_fft: 2048 # FFT size (samples).
n_shift: 300 # Hop size (samples). 12.5ms
win_length: 1200 # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
# Only used for feats_type != raw
fmin: 80 # Minimum frequency of Mel basis.
fmax: 7600 # Maximum frequency of Mel basis.
n_mels: 80 # The number of mel basis.
# Only used for the model using pitch features (e.g. FastSpeech2)
# The canton datasets we use are different from others like Databaker or LJSpeech,
# we set it to 110 to avoid too many zero-pitch problem.
# Reference: https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder/issues/38
f0min: 110 # Minimum f0 for pitch extraction.
f0max: 400 # Maximum f0 for pitch extraction.
###########################################################
# DATA SETTING #
###########################################################
batch_size: 32
num_workers: 2
###########################################################
# MODEL SETTING #
###########################################################
model:
adim: 384 # attention dimension
aheads: 2 # number of attention heads
elayers: 4 # number of encoder layers
eunits: 1536 # number of encoder ff units
dlayers: 4 # number of decoder layers
dunits: 1536 # number of decoder ff units
positionwise_layer_type: conv1d # type of position-wise layer
positionwise_conv_kernel_size: 3 # kernel size of position wise conv layer
duration_predictor_layers: 2 # number of layers of duration predictor
duration_predictor_chans: 256 # number of channels of duration predictor
duration_predictor_kernel_size: 3 # filter size of duration predictor
postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet
use_scaled_pos_enc: True # whether to use scaled positional encoding
encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input
reduction_factor: 1 # reduction factor
init_type: xavier_uniform # initialization type
init_enc_alpha: 1.0 # initial value of alpha of encoder scaled position encoding
init_dec_alpha: 1.0 # initial value of alpha of decoder scaled position encoding
transformer_enc_dropout_rate: 0.2 # dropout rate for transformer encoder layer
transformer_enc_positional_dropout_rate: 0.2 # dropout rate for transformer encoder positional encoding
transformer_enc_attn_dropout_rate: 0.2 # dropout rate for transformer encoder attention layer
transformer_dec_dropout_rate: 0.2 # dropout rate for transformer decoder layer
transformer_dec_positional_dropout_rate: 0.2 # dropout rate for transformer decoder positional encoding
transformer_dec_attn_dropout_rate: 0.2 # dropout rate for transformer decoder attention layer
pitch_predictor_layers: 5 # number of conv layers in pitch predictor
pitch_predictor_chans: 256 # number of channels of conv layers in pitch predictor
pitch_predictor_kernel_size: 5 # kernel size of conv leyers in pitch predictor
pitch_predictor_dropout: 0.5 # dropout rate in pitch predictor
pitch_embed_kernel_size: 1 # kernel size of conv embedding layer for pitch
pitch_embed_dropout: 0.0 # dropout rate after conv embedding layer for pitch
stop_gradient_from_pitch_predictor: True # whether to stop the gradient from pitch predictor to encoder
energy_predictor_layers: 2 # number of conv layers in energy predictor
energy_predictor_chans: 256 # number of channels of conv layers in energy predictor
energy_predictor_kernel_size: 3 # kernel size of conv leyers in energy predictor
energy_predictor_dropout: 0.5 # dropout rate in energy predictor
energy_embed_kernel_size: 1 # kernel size of conv embedding layer for energy
energy_embed_dropout: 0.0 # dropout rate after conv embedding layer for energy
stop_gradient_from_energy_predictor: False # whether to stop the gradient from energy predictor to encoder
spk_embed_dim: 256 # speaker embedding dimension
spk_embed_integration_type: concat # speaker embedding integration type
###########################################################
# UPDATER SETTING #
###########################################################
updater:
use_masking: True # whether to apply masking for padded part in loss calculation
###########################################################
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 1000
num_snapshots: 5
###########################################################
# OTHER SETTING #
###########################################################
seed: 10086

@ -0,0 +1,75 @@
#!/bin/bash
stage=0
stop_stage=100
config_path=$1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# get durations from MFA's result
echo "Generate durations.txt from MFA results ..."
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
--inputdir=./canton_alignment \
--output durations.txt \
--config=${config_path}
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# extract features
echo "Extract features ..."
python3 ${BIN_DIR}/preprocess.py \
--dataset=canton \
--rootdir=~/datasets/canton_all \
--dumpdir=dump \
--dur-file=durations.txt \
--config=${config_path} \
--num-cpu=20 \
--cut-sil=True
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="speech"
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="pitch"
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="energy"
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# normalize and covert phone/speaker to id, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/train/raw/metadata.jsonl \
--dumpdir=dump/train/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/dev/raw/metadata.jsonl \
--dumpdir=dump/dev/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/test/raw/metadata.jsonl \
--dumpdir=dump/test/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
fi

@ -0,0 +1 @@
../../../aishell3/tts3/local/synthesize.sh

@ -0,0 +1,53 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_canton \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=pwgan_aishell3 \
--voc_config=pwg_aishell3_ckpt_0.5/default.yaml \
--voc_ckpt=pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \
--voc_stat=pwg_aishell3_ckpt_0.5/feats_stats.npy \
--lang=canton \
--text=${BIN_DIR}/../sentences_canton.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--speaker_dict=dump/speaker_id_map.txt \
--spk_id=0 \
--inference_dir=${train_output_path}/inference
fi
# hifigan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo "in hifigan syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_canton \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=hifigan_aishell3 \
--voc_config=hifigan_aishell3_ckpt_0.2.0/default.yaml \
--voc_ckpt=hifigan_aishell3_ckpt_0.2.0/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_aishell3_ckpt_0.2.0/feats_stats.npy \
--lang=canton \
--text=${BIN_DIR}/../sentences_canton.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--speaker_dict=dump/speaker_id_map.txt \
--spk_id=0 \
--inference_dir=${train_output_path}/inference
fi

@ -0,0 +1 @@
../../../aishell3/tts3/local/train.sh

@ -0,0 +1 @@
../../csmsc/tts3/path.sh

@ -0,0 +1,38 @@
#!/bin/bash
set -e
source path.sh
gpus=0
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_280000.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan by default
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# synthesize_e2e, vocoder is pwgan by default
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi

@ -23,9 +23,9 @@ from contextlib import nullcontext
import jsonlines import jsonlines
import numpy as np import numpy as np
import paddle import paddle
import transformers
from hyperpyyaml import load_hyperpyyaml from hyperpyyaml import load_hyperpyyaml
from paddle import distributed as dist from paddle import distributed as dist
from paddlenlp.transformers import AutoTokenizer
from paddlespeech.s2t.frontend.featurizer import TextFeaturizer from paddlespeech.s2t.frontend.featurizer import TextFeaturizer
from paddlespeech.s2t.io.dataloader import DataLoaderFactory from paddlespeech.s2t.io.dataloader import DataLoaderFactory
@ -530,8 +530,7 @@ class Wav2Vec2ASRTrainer(Trainer):
datasets = [train_data, valid_data, test_data] datasets = [train_data, valid_data, test_data]
# Defining tokenizer and loading it # Defining tokenizer and loading it
tokenizer = transformers.BertTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained('bert-base-chinese')
'bert-base-chinese')
self.tokenizer = tokenizer self.tokenizer = tokenizer
# 2. Define audio pipeline: # 2. Define audio pipeline:
@data_pipeline.takes("wav") @data_pipeline.takes("wav")
@ -867,8 +866,7 @@ class Wav2Vec2ASRTester(Wav2Vec2ASRTrainer):
vocab_list = self.vocab_list vocab_list = self.vocab_list
decode_batch_size = decode_cfg.decode_batch_size decode_batch_size = decode_cfg.decode_batch_size
with jsonlines.open( with jsonlines.open(self.args.result_file, 'w') as fout:
self.args.result_file, 'w', encoding='utf8') as fout:
for i, batch in enumerate(self.test_loader): for i, batch in enumerate(self.test_loader):
if self.use_sb: if self.use_sb:
metrics = self.sb_compute_metrics(**batch, fout=fout) metrics = self.sb_compute_metrics(**batch, fout=fout)

@ -464,5 +464,5 @@ class DataLoaderFactory():
subsampling_factor=config.subsampling_factor, subsampling_factor=config.subsampling_factor,
load_aux_output=config.get('load_transcript', None), load_aux_output=config.get('load_transcript', None),
num_encs=config.num_encs, num_encs=config.num_encs,
dist_sampler=config.dist_sampler, dist_sampler=config.get('dist_sampler', None),
shortest_first=config.shortest_first) shortest_first=config.shortest_first)

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from collections import defaultdict from collections import defaultdict
from turtle import Turtle
from typing import Dict from typing import Dict
from typing import List from typing import List
from typing import Tuple from typing import Tuple
@ -83,6 +84,7 @@ class Wav2vec2ASR(nn.Layer):
text_feature: Dict[str, int], text_feature: Dict[str, int],
decoding_method: str, decoding_method: str,
beam_size: int, beam_size: int,
tokenizer: str=None,
sb_pipeline=False): sb_pipeline=False):
batch_size = feats.shape[0] batch_size = feats.shape[0]
@ -93,12 +95,15 @@ class Wav2vec2ASR(nn.Layer):
logger.error(f"current batch_size is {batch_size}") logger.error(f"current batch_size is {batch_size}")
if decoding_method == 'ctc_greedy_search': if decoding_method == 'ctc_greedy_search':
if not sb_pipeline: if tokenizer is None and sb_pipeline is False:
hyps = self.ctc_greedy_search(feats) hyps = self.ctc_greedy_search(feats)
res = [text_feature.defeaturize(hyp) for hyp in hyps] res = [text_feature.defeaturize(hyp) for hyp in hyps]
res_tokenids = [hyp for hyp in hyps] res_tokenids = [hyp for hyp in hyps]
else: else:
hyps = self.ctc_greedy_search(feats.unsqueeze(-1)) if sb_pipeline is True:
hyps = self.ctc_greedy_search(feats.unsqueeze(-1))
else:
hyps = self.ctc_greedy_search(feats)
res = [] res = []
res_tokenids = [] res_tokenids = []
for sequence in hyps: for sequence in hyps:
@ -123,13 +128,16 @@ class Wav2vec2ASR(nn.Layer):
# with other batch decoding mode # with other batch decoding mode
elif decoding_method == 'ctc_prefix_beam_search': elif decoding_method == 'ctc_prefix_beam_search':
assert feats.shape[0] == 1 assert feats.shape[0] == 1
if not sb_pipeline: if tokenizer is None and sb_pipeline is False:
hyp = self.ctc_prefix_beam_search(feats, beam_size) hyp = self.ctc_prefix_beam_search(feats, beam_size)
res = [text_feature.defeaturize(hyp)] res = [text_feature.defeaturize(hyp)]
res_tokenids = [hyp] res_tokenids = [hyp]
else: else:
hyp = self.ctc_prefix_beam_search( if sb_pipeline is True:
feats.unsqueeze(-1), beam_size) hyp = self.ctc_prefix_beam_search(
feats.unsqueeze(-1), beam_size)
else:
hyp = self.ctc_prefix_beam_search(feats, beam_size)
res = [] res = []
res_tokenids = [] res_tokenids = []
predicted_tokens = text_feature.convert_ids_to_tokens(hyp) predicted_tokens = text_feature.convert_ids_to_tokens(hyp)

@ -102,7 +102,7 @@ class Pitch():
def _convert_to_continuous_f0(self, f0: np.ndarray) -> np.ndarray: def _convert_to_continuous_f0(self, f0: np.ndarray) -> np.ndarray:
if (f0 == 0).all(): if (f0 == 0).all():
print("All frames seems to be unvoiced.") print("All frames seems to be unvoiced, this utt will be removed.")
return f0 return f0
# padding start and end of f0 sequence # padding start and end of f0 sequence

@ -54,8 +54,15 @@ def process_sentence(config: Dict[str, Any],
record = None record = None
if utt_id in sentences: if utt_id in sentences:
# reading, resampling may occur # reading, resampling may occur
wav, _ = librosa.load(str(fp), sr=config.fs) wav, _ = librosa.load(
if len(wav.shape) != 1: str(fp), sr=config.fs,
mono=False) if "canton" in str(fp) else librosa.load(
str(fp), sr=config.fs)
if len(wav.shape) == 2 and "canton" in str(fp):
# Remind that Cantonese datasets should be placed in ~/datasets/canton_all. Otherwise, it may cause problem.
wav = wav[0]
wav = np.ascontiguousarray(wav)
elif len(wav.shape) != 1:
return record return record
max_value = np.abs(wav).max() max_value = np.abs(wav).max()
if max_value > 1.0: if max_value > 1.0:
@ -102,6 +109,8 @@ def process_sentence(config: Dict[str, Any],
np.save(mel_path, logmel) np.save(mel_path, logmel)
# extract pitch and energy # extract pitch and energy
f0 = pitch_extractor.get_pitch(wav, duration=np.array(durations)) f0 = pitch_extractor.get_pitch(wav, duration=np.array(durations))
if (f0 == 0).all():
return None
assert f0.shape[0] == len(durations) assert f0.shape[0] == len(durations)
f0_dir = output_dir / "data_pitch" f0_dir = output_dir / "data_pitch"
f0_dir.mkdir(parents=True, exist_ok=True) f0_dir.mkdir(parents=True, exist_ok=True)
@ -282,7 +291,20 @@ def main():
test_wav_files += wav_files[-sub_num_dev:] test_wav_files += wav_files[-sub_num_dev:]
else: else:
train_wav_files += wav_files train_wav_files += wav_files
elif args.dataset == "canton":
sub_num_dev = 5
wav_dir = rootdir / "WAV"
train_wav_files = []
dev_wav_files = []
test_wav_files = []
for speaker in os.listdir(wav_dir):
wav_files = sorted(list((wav_dir / speaker).rglob("*.wav")))
if len(wav_files) > 100:
train_wav_files += wav_files[:-sub_num_dev * 2]
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
test_wav_files += wav_files[-sub_num_dev:]
else:
train_wav_files += wav_files
elif args.dataset == "ljspeech": elif args.dataset == "ljspeech":
wav_files = sorted(list((rootdir / "wavs").rglob("*.wav"))) wav_files = sorted(list((rootdir / "wavs").rglob("*.wav")))
# split data into 3 sections # split data into 3 sections

@ -0,0 +1,7 @@
001 白云山爬过一次嘅,好远啊,爬上去都成两个钟
002 睇书咯,番屋企,而家好多人好少睇书噶喎
003 因为如果唔考试嘅话,工资好低噶
004 冇固定噶,你中意休边日就边日噶
005 即系太迟嘅话咧,落班太迟嘅话就喺出边食啲咯
006 是非有公理,慎言莫冒犯别人
007 遇上冷风雨,休太认真

@ -33,6 +33,7 @@ from paddlespeech.t2s.datasets.am_batch_fn import *
from paddlespeech.t2s.datasets.data_table import DataTable from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.datasets.vocoder_batch_fn import Clip_static from paddlespeech.t2s.datasets.vocoder_batch_fn import Clip_static
from paddlespeech.t2s.frontend import English from paddlespeech.t2s.frontend import English
from paddlespeech.t2s.frontend.canton_frontend import CantonFrontend
from paddlespeech.t2s.frontend.mix_frontend import MixFrontend from paddlespeech.t2s.frontend.mix_frontend import MixFrontend
from paddlespeech.t2s.frontend.zh_frontend import Frontend from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.t2s.modules.normalizer import ZScore from paddlespeech.t2s.modules.normalizer import ZScore
@ -111,7 +112,7 @@ def get_sentences(text_file: Optional[os.PathLike], lang: str='zh'):
if line.strip() != "": if line.strip() != "":
items = re.split(r"\s+", line.strip(), 1) items = re.split(r"\s+", line.strip(), 1)
utt_id = items[0] utt_id = items[0]
if lang == 'zh': if lang in {'zh', 'canton'}:
sentence = "".join(items[1:]) sentence = "".join(items[1:])
elif lang == 'en': elif lang == 'en':
sentence = " ".join(items[1:]) sentence = " ".join(items[1:])
@ -132,8 +133,8 @@ def get_test_dataset(test_metadata: List[Dict[str, Any]],
converters = {} converters = {}
if am_name == 'fastspeech2': if am_name == 'fastspeech2':
fields = ["utt_id", "text"] fields = ["utt_id", "text"]
if am_dataset in {"aishell3", "vctk", if am_dataset in {"aishell3", "vctk", "mix",
"mix"} and speaker_dict is not None: "canton"} and speaker_dict is not None:
print("multiple speaker fastspeech2!") print("multiple speaker fastspeech2!")
fields += ["spk_id"] fields += ["spk_id"]
elif voice_cloning: elif voice_cloning:
@ -177,8 +178,8 @@ def get_dev_dataloader(dev_metadata: List[Dict[str, Any]],
converters = {} converters = {}
if am_name == 'fastspeech2': if am_name == 'fastspeech2':
fields = ["utt_id", "text"] fields = ["utt_id", "text"]
if am_dataset in {"aishell3", "vctk", if am_dataset in {"aishell3", "vctk", "mix",
"mix"} and speaker_dict is not None: "canton"} and speaker_dict is not None:
print("multiple speaker fastspeech2!") print("multiple speaker fastspeech2!")
collate_fn = fastspeech2_multi_spk_batch_fn_static collate_fn = fastspeech2_multi_spk_batch_fn_static
fields += ["spk_id"] fields += ["spk_id"]
@ -266,6 +267,8 @@ def get_frontend(lang: str='zh',
phone_vocab_path=phones_dict, phone_vocab_path=phones_dict,
tone_vocab_path=tones_dict, tone_vocab_path=tones_dict,
use_rhy=use_rhy) use_rhy=use_rhy)
elif lang == 'canton':
frontend = CantonFrontend(phone_vocab_path=phones_dict)
elif lang == 'en': elif lang == 'en':
frontend = English(phone_vocab_path=phones_dict) frontend = English(phone_vocab_path=phones_dict)
elif lang == 'mix': elif lang == 'mix':
@ -302,6 +305,10 @@ def run_frontend(frontend: object,
if get_tone_ids: if get_tone_ids:
tone_ids = input_ids["tone_ids"] tone_ids = input_ids["tone_ids"]
outs.update({'tone_ids': tone_ids}) outs.update({'tone_ids': tone_ids})
elif lang == 'canton':
input_ids = frontend.get_input_ids(
text, merge_sentences=merge_sentences, to_tensor=to_tensor)
phone_ids = input_ids["phone_ids"]
elif lang == 'en': elif lang == 'en':
input_ids = frontend.get_input_ids( input_ids = frontend.get_input_ids(
text, merge_sentences=merge_sentences, to_tensor=to_tensor) text, merge_sentences=merge_sentences, to_tensor=to_tensor)
@ -311,7 +318,7 @@ def run_frontend(frontend: object,
text, merge_sentences=merge_sentences, to_tensor=to_tensor) text, merge_sentences=merge_sentences, to_tensor=to_tensor)
phone_ids = input_ids["phone_ids"] phone_ids = input_ids["phone_ids"]
else: else:
print("lang should in {'zh', 'en', 'mix'}!") print("lang should in {'zh', 'en', 'mix', 'canton'}!")
outs.update({'phone_ids': phone_ids}) outs.update({'phone_ids': phone_ids})
return outs return outs
@ -411,8 +418,8 @@ def am_to_static(am_inference,
am_name = am[:am.rindex('_')] am_name = am[:am.rindex('_')]
am_dataset = am[am.rindex('_') + 1:] am_dataset = am[am.rindex('_') + 1:]
if am_name == 'fastspeech2': if am_name == 'fastspeech2':
if am_dataset in {"aishell3", "vctk", if am_dataset in {"aishell3", "vctk", "mix",
"mix"} and speaker_dict is not None: "canton"} and speaker_dict is not None:
am_inference = jit.to_static( am_inference = jit.to_static(
am_inference, am_inference,
input_spec=[ input_spec=[
@ -424,8 +431,8 @@ def am_to_static(am_inference,
am_inference, input_spec=[InputSpec([-1], dtype=paddle.int64)]) am_inference, input_spec=[InputSpec([-1], dtype=paddle.int64)])
elif am_name == 'speedyspeech': elif am_name == 'speedyspeech':
if am_dataset in {"aishell3", "vctk", if am_dataset in {"aishell3", "vctk", "mix",
"mix"} and speaker_dict is not None: "canton"} and speaker_dict is not None:
am_inference = jit.to_static( am_inference = jit.to_static(
am_inference, am_inference,
input_spec=[ input_spec=[
@ -575,7 +582,7 @@ def get_am_output(
get_tone_ids = False get_tone_ids = False
if am_name == 'speedyspeech': if am_name == 'speedyspeech':
get_tone_ids = True get_tone_ids = True
if am_dataset in {"aishell3", "vctk", "mix"} and speaker_dict: if am_dataset in {"aishell3", "vctk", "mix", "canton"} and speaker_dict:
get_spk_id = True get_spk_id = True
spk_id = np.array([spk_id]) spk_id = np.array([spk_id])

@ -136,7 +136,8 @@ def parse_args():
choices=[ choices=[
'speedyspeech_csmsc', 'fastspeech2_csmsc', 'fastspeech2_ljspeech', 'speedyspeech_csmsc', 'fastspeech2_csmsc', 'fastspeech2_ljspeech',
'fastspeech2_aishell3', 'fastspeech2_vctk', 'tacotron2_csmsc', 'fastspeech2_aishell3', 'fastspeech2_vctk', 'tacotron2_csmsc',
'tacotron2_ljspeech', 'tacotron2_aishell3', 'fastspeech2_mix' 'tacotron2_ljspeech', 'tacotron2_aishell3', 'fastspeech2_mix',
'fastspeech2_canton'
], ],
help='Choose acoustic model type of tts task.') help='Choose acoustic model type of tts task.')
parser.add_argument( parser.add_argument(

@ -119,7 +119,7 @@ def evaluate(args):
# acoustic model # acoustic model
if am_name == 'fastspeech2': if am_name == 'fastspeech2':
# multi speaker # multi speaker
if am_dataset in {"aishell3", "vctk", "mix"}: if am_dataset in {"aishell3", "vctk", "mix", "canton"}:
spk_id = paddle.to_tensor(args.spk_id) spk_id = paddle.to_tensor(args.spk_id)
mel = am_inference(part_phone_ids, spk_id) mel = am_inference(part_phone_ids, spk_id)
else: else:
@ -167,7 +167,8 @@ def parse_args():
choices=[ choices=[
'speedyspeech_csmsc', 'speedyspeech_aishell3', 'fastspeech2_csmsc', 'speedyspeech_csmsc', 'speedyspeech_aishell3', 'fastspeech2_csmsc',
'fastspeech2_ljspeech', 'fastspeech2_aishell3', 'fastspeech2_vctk', 'fastspeech2_ljspeech', 'fastspeech2_aishell3', 'fastspeech2_vctk',
'tacotron2_csmsc', 'tacotron2_ljspeech', 'fastspeech2_mix' 'tacotron2_csmsc', 'tacotron2_ljspeech', 'fastspeech2_mix',
'fastspeech2_canton'
], ],
help='Choose acoustic model type of tts task.') help='Choose acoustic model type of tts task.')
parser.add_argument( parser.add_argument(

@ -0,0 +1,106 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict
from typing import List
import numpy as np
import paddle
import ToJyutping
from paddlespeech.t2s.frontend.zh_normalization.text_normlization import TextNormalizer
INITIALS = [
'p', 'b', 't', 'd', 'ts', 'dz', 'k', 'g', 'kw', 'gw', 'f', 'h', 'l', 'm',
'ng', 'n', 's', 'y', 'w', 'c', 'z', 'j'
]
INITIALS += ['sp', 'spl', 'spn', 'sil']
def get_lines(cantons: List[str]):
phones = []
for canton in cantons:
for consonant in INITIALS:
if canton.startswith(consonant):
c, v = canton[:len(consonant)], canton[len(consonant):]
phones = phones + [c, v]
return phones
class CantonFrontend():
def __init__(self, phone_vocab_path: str):
self.text_normalizer = TextNormalizer()
self.punc = ":,;。?!“”‘’':,;.?!"
self.vocab_phones = {}
if phone_vocab_path:
with open(phone_vocab_path, 'rt', encoding='utf-8') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
self.vocab_phones[phn] = int(id)
# if merge_sentences, merge all sentences into one phone sequence
def _g2p(self, sentences: List[str],
merge_sentences: bool=True) -> List[List[str]]:
phones_list = []
for sentence in sentences:
phones_str = ToJyutping.get_jyutping_text(sentence)
phones_split = get_lines(phones_str.split(' '))
phones_list.append(phones_split)
return phones_list
def _p2id(self, phonemes: List[str]) -> np.ndarray:
# replace unk phone with sp
phonemes = [
phn if phn in self.vocab_phones else "sp" for phn in phonemes
]
phone_ids = [self.vocab_phones[item] for item in phonemes]
return np.array(phone_ids, np.int64)
def get_phonemes(self,
sentence: str,
merge_sentences: bool=True,
print_info: bool=False) -> List[List[str]]:
sentences = self.text_normalizer.normalize(sentence)
phonemes = self._g2p(sentences, merge_sentences=merge_sentences)
if print_info:
print("----------------------------")
print("text norm results:")
print(sentences)
print("----------------------------")
print("g2p results:")
print(phonemes)
print("----------------------------")
return phonemes
def get_input_ids(self,
sentence: str,
merge_sentences: bool=True,
print_info: bool=False,
to_tensor: bool=True) -> Dict[str, List[paddle.Tensor]]:
phonemes = self.get_phonemes(
sentence, merge_sentences=merge_sentences, print_info=print_info)
result = {}
temp_phone_ids = []
for phones in phonemes:
if phones:
phone_ids = self._p2id(phones)
# if use paddle.to_tensor() in onnxruntime, the first time will be too low
if to_tensor:
phone_ids = paddle.to_tensor(phone_ids)
temp_phone_ids.append(phone_ids)
if temp_phone_ids:
result["phone_ids"] = temp_phone_ids
return result

@ -69,7 +69,6 @@ base = [
"paddleslim>=2.3.4", "paddleslim>=2.3.4",
"paddleaudio>=1.1.0", "paddleaudio>=1.1.0",
"hyperpyyaml", "hyperpyyaml",
"transformers",
] ]
server = ["pattern_singleton", "websockets"] server = ["pattern_singleton", "websockets"]

Loading…
Cancel
Save