commit
dcfc32f1ec
@ -0,0 +1,67 @@
|
||||
|
||||
###########################################################
|
||||
# FEATURE EXTRACTION SETTING #
|
||||
###########################################################
|
||||
fs: 24000 # Sampling rate.
|
||||
n_fft: 2048 # FFT size (samples).
|
||||
n_shift: 300 # Hop size (samples). 12.5ms
|
||||
win_length: 1200 # Window length (samples). 50ms
|
||||
# If set to null, it will be the same as fft_size.
|
||||
window: "hann" # Window function.
|
||||
n_mels: 80 # Number of mel basis.
|
||||
fmin: 80 # Minimum freq in mel basis calculation. (Hz)
|
||||
fmax: 7600 # Maximum frequency in mel basis calculation. (Hz)
|
||||
mu_law: True # Recommended to suppress noise if using raw bitsexit()
|
||||
|
||||
|
||||
###########################################################
|
||||
# MODEL SETTING #
|
||||
###########################################################
|
||||
model:
|
||||
rnn_dims: 512 # Hidden dims of RNN Layers.
|
||||
fc_dims: 512
|
||||
bits: 9 # Bit depth of signal
|
||||
aux_context_window: 2 # Context window size for auxiliary feature.
|
||||
# If set to 2, previous 2 and future 2 frames will be considered.
|
||||
aux_channels: 80 # Number of channels for auxiliary feature conv.
|
||||
# Must be the same as num_mels.
|
||||
upsample_scales: [4, 5, 3, 5] # Upsampling scales. Prodcut of these must be the same as hop size, same with pwgan here
|
||||
compute_dims: 128 # Dims of Conv1D in MelResNet.
|
||||
res_out_dims: 128 # Dims of output in MelResNet.
|
||||
res_blocks: 10 # Number of residual blocks.
|
||||
mode: RAW # either 'raw'(softmax on raw bits) or 'mold' (sample from mixture of logistics)
|
||||
inference:
|
||||
gen_batched: True # whether to genenate sample in batch mode
|
||||
target: 12000 # target number of samples to be generated in each batch entry
|
||||
overlap: 600 # number of samples for crossfading between batches
|
||||
|
||||
|
||||
###########################################################
|
||||
# DATA LOADER SETTING #
|
||||
###########################################################
|
||||
batch_size: 64 # Batch size.
|
||||
batch_max_steps: 4500 # Length of each audio in batch. Make sure dividable by hop_size.
|
||||
num_workers: 2 # Number of workers in DataLoader.
|
||||
|
||||
###########################################################
|
||||
# OPTIMIZER SETTING #
|
||||
###########################################################
|
||||
grad_clip: 4.0
|
||||
learning_rate: 1.0e-4
|
||||
|
||||
|
||||
###########################################################
|
||||
# INTERVAL SETTING #
|
||||
###########################################################
|
||||
|
||||
train_max_steps: 400000 # Number of training steps.
|
||||
save_interval_steps: 5000 # Interval steps to save checkpoint.
|
||||
eval_interval_steps: 1000 # Interval steps to evaluate the network.
|
||||
gen_eval_samples_interval_steps: 5000 # the iteration interval of generating valid samples
|
||||
generate_num: 5 # number of samples to generate at each checkpoint
|
||||
|
||||
###########################################################
|
||||
# OTHER SETTING #
|
||||
###########################################################
|
||||
num_snapshots: 10 # max number of snapshots to keep while training
|
||||
seed: 42 # random seed for paddle, random, and np.random
|
@ -0,0 +1,55 @@
|
||||
#!/bin/bash
|
||||
|
||||
stage=0
|
||||
stop_stage=100
|
||||
|
||||
config_path=$1
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
# get durations from MFA's result
|
||||
echo "Generate durations.txt from MFA results ..."
|
||||
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
|
||||
--inputdir=./baker_alignment_tone \
|
||||
--output=durations.txt \
|
||||
--config=${config_path}
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
# extract features
|
||||
echo "Extract features ..."
|
||||
python3 ${BIN_DIR}/../gan_vocoder/preprocess.py \
|
||||
--rootdir=~/datasets/BZNSYP/ \
|
||||
--dataset=baker \
|
||||
--dumpdir=dump \
|
||||
--dur-file=durations.txt \
|
||||
--config=${config_path} \
|
||||
--cut-sil=True \
|
||||
--num-cpu=20
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
# get features' stats(mean and std)
|
||||
echo "Get features' stats ..."
|
||||
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
|
||||
--metadata=dump/train/raw/metadata.jsonl \
|
||||
--field-name="feats"
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
# normalize, dev and test should use train's stats
|
||||
echo "Normalize ..."
|
||||
|
||||
python3 ${BIN_DIR}/../gan_vocoder/normalize.py \
|
||||
--metadata=dump/train/raw/metadata.jsonl \
|
||||
--dumpdir=dump/train/norm \
|
||||
--stats=dump/train/feats_stats.npy
|
||||
python3 ${BIN_DIR}/../gan_vocoder/normalize.py \
|
||||
--metadata=dump/dev/raw/metadata.jsonl \
|
||||
--dumpdir=dump/dev/norm \
|
||||
--stats=dump/train/feats_stats.npy
|
||||
|
||||
python3 ${BIN_DIR}/../gan_vocoder/normalize.py \
|
||||
--metadata=dump/test/raw/metadata.jsonl \
|
||||
--dumpdir=dump/test/norm \
|
||||
--stats=dump/train/feats_stats.npy
|
||||
fi
|
@ -0,0 +1,13 @@
|
||||
#!/bin/bash
|
||||
|
||||
config_path=$1
|
||||
train_output_path=$2
|
||||
ckpt_name=$3
|
||||
|
||||
FLAGS_allocator_strategy=naive_best_fit \
|
||||
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
|
||||
python3 ${BIN_DIR}/synthesize.py \
|
||||
--config=${config_path} \
|
||||
--checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
|
||||
--test-metadata=dump/test/norm/metadata.jsonl \
|
||||
--output-dir=${train_output_path}/test
|
@ -0,0 +1,13 @@
|
||||
#!/bin/bash
|
||||
|
||||
config_path=$1
|
||||
train_output_path=$2
|
||||
|
||||
FLAGS_cudnn_exhaustive_search=true \
|
||||
FLAGS_conv_workspace_size_limit=4000 \
|
||||
python ${BIN_DIR}/train.py \
|
||||
--train-metadata=dump/train/norm/metadata.jsonl \
|
||||
--dev-metadata=dump/dev/norm/metadata.jsonl \
|
||||
--config=${config_path} \
|
||||
--output-dir=${train_output_path} \
|
||||
--ngpu=1
|
@ -0,0 +1,13 @@
|
||||
#!/bin/bash
|
||||
export MAIN_ROOT=`realpath ${PWD}/../../../`
|
||||
|
||||
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
|
||||
export LC_ALL=C
|
||||
|
||||
export PYTHONDONTWRITEBYTECODE=1
|
||||
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
|
||||
|
||||
MODEL=wavernn
|
||||
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}
|
@ -0,0 +1,30 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
source path.sh
|
||||
|
||||
gpus=0,1
|
||||
stage=0
|
||||
stop_stage=100
|
||||
|
||||
conf_path=conf/default.yaml
|
||||
train_output_path=exp/default
|
||||
test_input=dump/dump_gta_test
|
||||
ckpt_name=snapshot_iter_100000.pdz
|
||||
|
||||
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
# prepare data
|
||||
./local/preprocess.sh ${conf_path} || exit -1
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
# prepare data
|
||||
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
# synthesize
|
||||
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
|
||||
fi
|
@ -0,0 +1,51 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
|
||||
|
||||
# x: [0: 2**bit-1], return: [-1, 1]
|
||||
def label_2_float(x, bits):
|
||||
return 2 * x / (2**bits - 1.) - 1.
|
||||
|
||||
|
||||
#x: [-1, 1], return: [0, 2**bits-1]
|
||||
def float_2_label(x, bits):
|
||||
assert abs(x).max() <= 1.0
|
||||
x = (x + 1.) * (2**bits - 1) / 2
|
||||
return x.clip(0, 2**bits - 1)
|
||||
|
||||
|
||||
# y: [-1, 1], mu: 2**bits, return: [0, 2**bits-1]
|
||||
# see https://en.wikipedia.org/wiki/%CE%9C-law_algorithm
|
||||
# be careful the input `mu` here, which is +1 than that of the link above
|
||||
def encode_mu_law(x, mu):
|
||||
mu = mu - 1
|
||||
fx = np.sign(x) * np.log(1 + mu * np.abs(x)) / np.log(1 + mu)
|
||||
return np.floor((fx + 1) / 2 * mu + 0.5)
|
||||
|
||||
|
||||
# from_labels = True:
|
||||
# y: [0: 2**bit-1], mu: 2**bits, return: [-1,1]
|
||||
# from_labels = False:
|
||||
# y: [-1, 1], return: [-1, 1]
|
||||
def decode_mu_law(y, mu, from_labels=True):
|
||||
# TODO: get rid of log2 - makes no sense
|
||||
if from_labels:
|
||||
y = label_2_float(y, math.log2(mu))
|
||||
mu = mu - 1
|
||||
x = paddle.sign(y) / mu * ((1 + mu)**paddle.abs(y) - 1)
|
||||
return x
|
@ -0,0 +1,13 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
@ -0,0 +1,108 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import jsonlines
|
||||
import numpy as np
|
||||
import paddle
|
||||
import soundfile as sf
|
||||
import yaml
|
||||
from paddle import distributed as dist
|
||||
from timer import timer
|
||||
from yacs.config import CfgNode
|
||||
|
||||
from paddlespeech.t2s.datasets.data_table import DataTable
|
||||
from paddlespeech.t2s.models.wavernn import WaveRNN
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Synthesize with WaveRNN.")
|
||||
|
||||
parser.add_argument("--config", type=str, help="GANVocoder config file.")
|
||||
parser.add_argument("--checkpoint", type=str, help="snapshot to load.")
|
||||
parser.add_argument("--test-metadata", type=str, help="dev data.")
|
||||
parser.add_argument("--output-dir", type=str, help="output dir.")
|
||||
parser.add_argument(
|
||||
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.config) as f:
|
||||
config = CfgNode(yaml.safe_load(f))
|
||||
|
||||
print("========Args========")
|
||||
print(yaml.safe_dump(vars(args)))
|
||||
print("========Config========")
|
||||
print(config)
|
||||
print(
|
||||
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
|
||||
)
|
||||
|
||||
if args.ngpu == 0:
|
||||
paddle.set_device("cpu")
|
||||
elif args.ngpu > 0:
|
||||
paddle.set_device("gpu")
|
||||
else:
|
||||
print("ngpu should >= 0 !")
|
||||
|
||||
model = WaveRNN(
|
||||
hop_length=config.n_shift, sample_rate=config.fs, **config["model"])
|
||||
state_dict = paddle.load(args.checkpoint)
|
||||
model.set_state_dict(state_dict["main_params"])
|
||||
|
||||
model.eval()
|
||||
|
||||
with jsonlines.open(args.test_metadata, 'r') as reader:
|
||||
metadata = list(reader)
|
||||
test_dataset = DataTable(
|
||||
metadata,
|
||||
fields=['utt_id', 'feats'],
|
||||
converters={
|
||||
'utt_id': None,
|
||||
'feats': np.load,
|
||||
})
|
||||
output_dir = Path(args.output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
N = 0
|
||||
T = 0
|
||||
for example in test_dataset:
|
||||
utt_id = example['utt_id']
|
||||
mel = example['feats']
|
||||
mel = paddle.to_tensor(mel) # (T, C)
|
||||
with timer() as t:
|
||||
with paddle.no_grad():
|
||||
wav = model.generate(
|
||||
c=mel,
|
||||
batched=config.inference.gen_batched,
|
||||
target=config.inference.target,
|
||||
overlap=config.inference.overlap,
|
||||
mu_law=config.mu_law,
|
||||
gen_display=True)
|
||||
wav = wav.numpy()
|
||||
N += wav.size
|
||||
T += t.elapse
|
||||
speed = wav.size / t.elapse
|
||||
rtf = config.fs / speed
|
||||
print(
|
||||
f"{utt_id}, mel: {mel.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
||||
)
|
||||
sf.write(str(output_dir / (utt_id + ".wav")), wav, samplerate=config.fs)
|
||||
print(f"generation speed: {N / T}Hz, RTF: {config.fs / (N / T) }")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,212 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import jsonlines
|
||||
import numpy as np
|
||||
import paddle
|
||||
import yaml
|
||||
from paddle import DataParallel
|
||||
from paddle import distributed as dist
|
||||
from paddle.io import DataLoader
|
||||
from paddle.io import DistributedBatchSampler
|
||||
from paddle.optimizer import Adam
|
||||
from yacs.config import CfgNode
|
||||
|
||||
from paddlespeech.t2s.datasets.data_table import DataTable
|
||||
from paddlespeech.t2s.datasets.vocoder_batch_fn import WaveRNNClip
|
||||
from paddlespeech.t2s.models.wavernn import WaveRNN
|
||||
from paddlespeech.t2s.models.wavernn import WaveRNNEvaluator
|
||||
from paddlespeech.t2s.models.wavernn import WaveRNNUpdater
|
||||
from paddlespeech.t2s.modules.losses import discretized_mix_logistic_loss
|
||||
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
|
||||
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
|
||||
from paddlespeech.t2s.training.seeding import seed_everything
|
||||
from paddlespeech.t2s.training.trainer import Trainer
|
||||
|
||||
|
||||
def train_sp(args, config):
|
||||
# decides device type and whether to run in parallel
|
||||
# setup running environment correctly
|
||||
world_size = paddle.distributed.get_world_size()
|
||||
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
|
||||
paddle.set_device("cpu")
|
||||
else:
|
||||
paddle.set_device("gpu")
|
||||
if world_size > 1:
|
||||
paddle.distributed.init_parallel_env()
|
||||
|
||||
# set the random seed, it is a must for multiprocess training
|
||||
seed_everything(config.seed)
|
||||
|
||||
print(
|
||||
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
|
||||
)
|
||||
|
||||
# construct dataset for training and validation
|
||||
with jsonlines.open(args.train_metadata, 'r') as reader:
|
||||
train_metadata = list(reader)
|
||||
train_dataset = DataTable(
|
||||
data=train_metadata,
|
||||
fields=["wave", "feats"],
|
||||
converters={
|
||||
"wave": np.load,
|
||||
"feats": np.load,
|
||||
}, )
|
||||
|
||||
with jsonlines.open(args.dev_metadata, 'r') as reader:
|
||||
dev_metadata = list(reader)
|
||||
dev_dataset = DataTable(
|
||||
data=dev_metadata,
|
||||
fields=["wave", "feats"],
|
||||
converters={
|
||||
"wave": np.load,
|
||||
"feats": np.load,
|
||||
}, )
|
||||
|
||||
batch_fn = WaveRNNClip(
|
||||
mode=config.model.mode,
|
||||
aux_context_window=config.model.aux_context_window,
|
||||
hop_size=config.n_shift,
|
||||
batch_max_steps=config.batch_max_steps,
|
||||
bits=config.model.bits)
|
||||
|
||||
# collate function and dataloader
|
||||
train_sampler = DistributedBatchSampler(
|
||||
train_dataset,
|
||||
batch_size=config.batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True)
|
||||
dev_sampler = DistributedBatchSampler(
|
||||
dev_dataset,
|
||||
batch_size=config.batch_size,
|
||||
shuffle=False,
|
||||
drop_last=False)
|
||||
print("samplers done!")
|
||||
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
batch_sampler=train_sampler,
|
||||
collate_fn=batch_fn,
|
||||
num_workers=config.num_workers)
|
||||
|
||||
dev_dataloader = DataLoader(
|
||||
dev_dataset,
|
||||
collate_fn=batch_fn,
|
||||
batch_sampler=dev_sampler,
|
||||
num_workers=config.num_workers)
|
||||
|
||||
valid_generate_loader = DataLoader(dev_dataset, batch_size=1)
|
||||
|
||||
print("dataloaders done!")
|
||||
|
||||
model = WaveRNN(
|
||||
hop_length=config.n_shift, sample_rate=config.fs, **config["model"])
|
||||
if world_size > 1:
|
||||
model = DataParallel(model)
|
||||
print("model done!")
|
||||
|
||||
if config.model.mode == 'RAW':
|
||||
criterion = paddle.nn.CrossEntropyLoss(axis=1)
|
||||
elif config.model.mode == 'MOL':
|
||||
criterion = discretized_mix_logistic_loss
|
||||
else:
|
||||
criterion = None
|
||||
RuntimeError('Unknown model mode value - ', config.model.mode)
|
||||
print("criterions done!")
|
||||
clip = paddle.nn.ClipGradByGlobalNorm(config.grad_clip)
|
||||
optimizer = Adam(
|
||||
parameters=model.parameters(),
|
||||
learning_rate=config.learning_rate,
|
||||
grad_clip=clip)
|
||||
|
||||
print("optimizer done!")
|
||||
|
||||
output_dir = Path(args.output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
if dist.get_rank() == 0:
|
||||
config_name = args.config.split("/")[-1]
|
||||
# copy conf to output_dir
|
||||
shutil.copyfile(args.config, output_dir / config_name)
|
||||
|
||||
updater = WaveRNNUpdater(
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
criterion=criterion,
|
||||
dataloader=train_dataloader,
|
||||
output_dir=output_dir,
|
||||
mode=config.model.mode)
|
||||
|
||||
evaluator = WaveRNNEvaluator(
|
||||
model=model,
|
||||
dataloader=dev_dataloader,
|
||||
criterion=criterion,
|
||||
output_dir=output_dir,
|
||||
valid_generate_loader=valid_generate_loader,
|
||||
config=config)
|
||||
|
||||
trainer = Trainer(
|
||||
updater,
|
||||
stop_trigger=(config.train_max_steps, "iteration"),
|
||||
out=output_dir)
|
||||
|
||||
if dist.get_rank() == 0:
|
||||
trainer.extend(
|
||||
evaluator, trigger=(config.eval_interval_steps, 'iteration'))
|
||||
trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration'))
|
||||
trainer.extend(
|
||||
Snapshot(max_size=config.num_snapshots),
|
||||
trigger=(config.save_interval_steps, 'iteration'))
|
||||
|
||||
print("Trainer Done!")
|
||||
trainer.run()
|
||||
|
||||
|
||||
def main():
|
||||
# parse args and config and redirect to train_sp
|
||||
|
||||
parser = argparse.ArgumentParser(description="Train a HiFiGAN model.")
|
||||
parser.add_argument(
|
||||
"--config", type=str, help="config file to overwrite default config.")
|
||||
parser.add_argument("--train-metadata", type=str, help="training data.")
|
||||
parser.add_argument("--dev-metadata", type=str, help="dev data.")
|
||||
parser.add_argument("--output-dir", type=str, help="output dir.")
|
||||
parser.add_argument(
|
||||
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.config, 'rt') as f:
|
||||
config = CfgNode(yaml.safe_load(f))
|
||||
|
||||
print("========Args========")
|
||||
print(yaml.safe_dump(vars(args)))
|
||||
print("========Config========")
|
||||
print(config)
|
||||
print(
|
||||
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
|
||||
)
|
||||
|
||||
# dispatch
|
||||
if args.ngpu > 1:
|
||||
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
|
||||
else:
|
||||
train_sp(args, config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,15 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .wavernn import *
|
||||
from .wavernn_updater import *
|
@ -0,0 +1,627 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import sys
|
||||
import time
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddle.nn import functional as F
|
||||
|
||||
from paddlespeech.t2s.audio.codec import decode_mu_law
|
||||
from paddlespeech.t2s.modules.losses import sample_from_discretized_mix_logistic
|
||||
from paddlespeech.t2s.modules.nets_utils import initialize
|
||||
from paddlespeech.t2s.modules.upsample import Stretch2D
|
||||
|
||||
|
||||
class ResBlock(nn.Layer):
|
||||
def __init__(self, dims):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv1D(dims, dims, kernel_size=1, bias_attr=False)
|
||||
self.conv2 = nn.Conv1D(dims, dims, kernel_size=1, bias_attr=False)
|
||||
self.batch_norm1 = nn.BatchNorm1D(dims)
|
||||
self.batch_norm2 = nn.BatchNorm1D(dims)
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
conv -> bn -> relu -> conv -> bn + residual connection
|
||||
'''
|
||||
residual = x
|
||||
x = self.conv1(x)
|
||||
x = self.batch_norm1(x)
|
||||
x = F.relu(x)
|
||||
x = self.conv2(x)
|
||||
x = self.batch_norm2(x)
|
||||
return x + residual
|
||||
|
||||
|
||||
class MelResNet(nn.Layer):
|
||||
def __init__(self,
|
||||
res_blocks: int=10,
|
||||
compute_dims: int=128,
|
||||
res_out_dims: int=128,
|
||||
aux_channels: int=80,
|
||||
aux_context_window: int=0):
|
||||
super().__init__()
|
||||
k_size = aux_context_window * 2 + 1
|
||||
# pay attention here, the dim reduces aux_context_window * 2
|
||||
self.conv_in = nn.Conv1D(
|
||||
aux_channels, compute_dims, kernel_size=k_size, bias_attr=False)
|
||||
self.batch_norm = nn.BatchNorm1D(compute_dims)
|
||||
self.layers = nn.LayerList()
|
||||
for _ in range(res_blocks):
|
||||
self.layers.append(ResBlock(compute_dims))
|
||||
self.conv_out = nn.Conv1D(compute_dims, res_out_dims, kernel_size=1)
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
Parameters
|
||||
----------
|
||||
x : Tensor
|
||||
Input tensor (B, in_dims, T).
|
||||
Returns
|
||||
----------
|
||||
Tensor
|
||||
Output tensor (B, res_out_dims, T).
|
||||
'''
|
||||
|
||||
x = self.conv_in(x)
|
||||
x = self.batch_norm(x)
|
||||
x = F.relu(x)
|
||||
for f in self.layers:
|
||||
x = f(x)
|
||||
x = self.conv_out(x)
|
||||
return x
|
||||
|
||||
|
||||
class UpsampleNetwork(nn.Layer):
|
||||
def __init__(self,
|
||||
aux_channels: int=80,
|
||||
upsample_scales: List[int]=[4, 5, 3, 5],
|
||||
compute_dims: int=128,
|
||||
res_blocks: int=10,
|
||||
res_out_dims: int=128,
|
||||
aux_context_window: int=2):
|
||||
super().__init__()
|
||||
# total_scale is the total Up sampling multiple
|
||||
total_scale = np.prod(upsample_scales)
|
||||
# TODO pad*total_scale is numpy.int64
|
||||
self.indent = int(aux_context_window * total_scale)
|
||||
self.resnet = MelResNet(
|
||||
res_blocks=res_blocks,
|
||||
aux_channels=aux_channels,
|
||||
compute_dims=compute_dims,
|
||||
res_out_dims=res_out_dims,
|
||||
aux_context_window=aux_context_window)
|
||||
self.resnet_stretch = Stretch2D(total_scale, 1)
|
||||
self.up_layers = nn.LayerList()
|
||||
for scale in upsample_scales:
|
||||
k_size = (1, scale * 2 + 1)
|
||||
padding = (0, scale)
|
||||
stretch = Stretch2D(scale, 1)
|
||||
|
||||
conv = nn.Conv2D(
|
||||
1, 1, kernel_size=k_size, padding=padding, bias_attr=False)
|
||||
weight_ = paddle.full_like(conv.weight, 1. / k_size[1])
|
||||
conv.weight.set_value(weight_)
|
||||
self.up_layers.append(stretch)
|
||||
self.up_layers.append(conv)
|
||||
|
||||
def forward(self, m):
|
||||
'''
|
||||
Parameters
|
||||
----------
|
||||
c : Tensor
|
||||
Input tensor (B, C_aux, T).
|
||||
Returns
|
||||
----------
|
||||
Tensor
|
||||
Output tensor (B, (T - 2 * pad) * prob(upsample_scales), C_aux).
|
||||
Tensor
|
||||
Output tensor (B, (T - 2 * pad) * prob(upsample_scales), res_out_dims).
|
||||
'''
|
||||
# aux: [B, C_aux, T]
|
||||
# -> [B, res_out_dims, T - 2 * aux_context_window]
|
||||
# -> [B, 1, res_out_dims, T - 2 * aux_context_window]
|
||||
aux = self.resnet(m).unsqueeze(1)
|
||||
# aux: [B, 1, res_out_dims, T - 2 * aux_context_window]
|
||||
# -> [B, 1, res_out_dims, (T - 2 * pad) * prob(upsample_scales)]
|
||||
aux = self.resnet_stretch(aux)
|
||||
# aux: [B, 1, res_out_dims, T * prob(upsample_scales)]
|
||||
# -> [B, res_out_dims, T * prob(upsample_scales)]
|
||||
aux = aux.squeeze(1)
|
||||
# m: [B, C_aux, T] -> [B, 1, C_aux, T]
|
||||
m = m.unsqueeze(1)
|
||||
for f in self.up_layers:
|
||||
m = f(m)
|
||||
# m: [B, 1, C_aux, T*prob(upsample_scales)]
|
||||
# -> [B, C_aux, T * prob(upsample_scales)]
|
||||
# -> [B, C_aux, (T - 2 * pad) * prob(upsample_scales)]
|
||||
m = m.squeeze(1)[:, :, self.indent:-self.indent]
|
||||
# m: [B, (T - 2 * pad) * prob(upsample_scales), C_aux]
|
||||
# aux: [B, (T - 2 * pad) * prob(upsample_scales), res_out_dims]
|
||||
return m.transpose([0, 2, 1]), aux.transpose([0, 2, 1])
|
||||
|
||||
|
||||
class WaveRNN(nn.Layer):
|
||||
def __init__(
|
||||
self,
|
||||
rnn_dims: int=512,
|
||||
fc_dims: int=512,
|
||||
bits: int=9,
|
||||
aux_context_window: int=2,
|
||||
upsample_scales: List[int]=[4, 5, 3, 5],
|
||||
aux_channels: int=80,
|
||||
compute_dims: int=128,
|
||||
res_out_dims: int=128,
|
||||
res_blocks: int=10,
|
||||
hop_length: int=300,
|
||||
sample_rate: int=24000,
|
||||
mode='RAW',
|
||||
init_type: str="xavier_uniform", ):
|
||||
'''
|
||||
Parameters
|
||||
----------
|
||||
rnn_dims : int, optional
|
||||
Hidden dims of RNN Layers.
|
||||
fc_dims : int, optional
|
||||
Dims of FC Layers.
|
||||
bits : int, optional
|
||||
bit depth of signal.
|
||||
aux_context_window : int, optional
|
||||
The context window size of the first convolution applied to the
|
||||
auxiliary input, by default 2
|
||||
upsample_scales : List[int], optional
|
||||
Upsample scales of the upsample network.
|
||||
aux_channels : int, optional
|
||||
Auxiliary channel of the residual blocks.
|
||||
compute_dims : int, optional
|
||||
Dims of Conv1D in MelResNet.
|
||||
res_out_dims : int, optional
|
||||
Dims of output in MelResNet.
|
||||
res_blocks : int, optional
|
||||
Number of residual blocks.
|
||||
mode : str, optional
|
||||
Output mode of the WaveRNN vocoder. `MOL` for Mixture of Logistic Distribution,
|
||||
and `RAW` for quantized bits as the model's output.
|
||||
init_type : str
|
||||
How to initialize parameters.
|
||||
'''
|
||||
super().__init__()
|
||||
self.mode = mode
|
||||
self.aux_context_window = aux_context_window
|
||||
if self.mode == 'RAW':
|
||||
self.n_classes = 2**bits
|
||||
elif self.mode == 'MOL':
|
||||
self.n_classes = 10 * 3
|
||||
else:
|
||||
RuntimeError('Unknown model mode value - ', self.mode)
|
||||
|
||||
# List of rnns to call 'flatten_parameters()' on
|
||||
self._to_flatten = []
|
||||
|
||||
self.rnn_dims = rnn_dims
|
||||
self.aux_dims = res_out_dims // 4
|
||||
self.hop_length = hop_length
|
||||
self.sample_rate = sample_rate
|
||||
|
||||
# initialize parameters
|
||||
initialize(self, init_type)
|
||||
|
||||
self.upsample = UpsampleNetwork(
|
||||
aux_channels=aux_channels,
|
||||
upsample_scales=upsample_scales,
|
||||
compute_dims=compute_dims,
|
||||
res_blocks=res_blocks,
|
||||
res_out_dims=res_out_dims,
|
||||
aux_context_window=aux_context_window)
|
||||
self.I = nn.Linear(aux_channels + self.aux_dims + 1, rnn_dims)
|
||||
|
||||
self.rnn1 = nn.GRU(rnn_dims, rnn_dims)
|
||||
self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims)
|
||||
|
||||
self._to_flatten += [self.rnn1, self.rnn2]
|
||||
|
||||
self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims)
|
||||
self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims)
|
||||
self.fc3 = nn.Linear(fc_dims, self.n_classes)
|
||||
|
||||
# Avoid fragmentation of RNN parameters and associated warning
|
||||
self._flatten_parameters()
|
||||
|
||||
nn.initializer.set_global_initializer(None)
|
||||
|
||||
def forward(self, x, c):
|
||||
'''
|
||||
Parameters
|
||||
----------
|
||||
x : Tensor
|
||||
wav sequence, [B, T]
|
||||
c : Tensor
|
||||
mel spectrogram [B, C_aux, T']
|
||||
|
||||
T = (T' - 2 * aux_context_window ) * hop_length
|
||||
Returns
|
||||
----------
|
||||
Tensor
|
||||
[B, T, n_classes]
|
||||
'''
|
||||
# Although we `_flatten_parameters()` on init, when using DataParallel
|
||||
# the model gets replicated, making it no longer guaranteed that the
|
||||
# weights are contiguous in GPU memory. Hence, we must call it again
|
||||
self._flatten_parameters()
|
||||
|
||||
bsize = paddle.shape(x)[0]
|
||||
h1 = paddle.zeros([1, bsize, self.rnn_dims])
|
||||
h2 = paddle.zeros([1, bsize, self.rnn_dims])
|
||||
# c: [B, T, C_aux]
|
||||
# aux: [B, T, res_out_dims]
|
||||
c, aux = self.upsample(c)
|
||||
|
||||
aux_idx = [self.aux_dims * i for i in range(5)]
|
||||
a1 = aux[:, :, aux_idx[0]:aux_idx[1]]
|
||||
a2 = aux[:, :, aux_idx[1]:aux_idx[2]]
|
||||
a3 = aux[:, :, aux_idx[2]:aux_idx[3]]
|
||||
a4 = aux[:, :, aux_idx[3]:aux_idx[4]]
|
||||
|
||||
x = paddle.concat([x.unsqueeze(-1), c, a1], axis=2)
|
||||
x = self.I(x)
|
||||
res = x
|
||||
x, _ = self.rnn1(x, h1)
|
||||
|
||||
x = x + res
|
||||
res = x
|
||||
x = paddle.concat([x, a2], axis=2)
|
||||
x, _ = self.rnn2(x, h2)
|
||||
|
||||
x = x + res
|
||||
x = paddle.concat([x, a3], axis=2)
|
||||
x = F.relu(self.fc1(x))
|
||||
|
||||
x = paddle.concat([x, a4], axis=2)
|
||||
x = F.relu(self.fc2(x))
|
||||
|
||||
return self.fc3(x)
|
||||
|
||||
@paddle.no_grad()
|
||||
def generate(self,
|
||||
c,
|
||||
batched: bool=True,
|
||||
target: int=12000,
|
||||
overlap: int=600,
|
||||
mu_law: bool=True,
|
||||
gen_display: bool=False):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
c : Tensor
|
||||
input mels, (T', C_aux)
|
||||
batched : bool
|
||||
generate in batch or not
|
||||
target : int
|
||||
target number of samples to be generated in each batch entry
|
||||
overlap : int
|
||||
number of samples for crossfading between batches
|
||||
mu_law : bool
|
||||
use mu law or not
|
||||
Returns
|
||||
----------
|
||||
wav sequence
|
||||
Output (T' * prod(upsample_scales), out_channels, C_out).
|
||||
"""
|
||||
|
||||
self.eval()
|
||||
|
||||
mu_law = mu_law if self.mode == 'RAW' else False
|
||||
|
||||
output = []
|
||||
start = time.time()
|
||||
|
||||
# pseudo batch
|
||||
# (T, C_aux) -> (1, C_aux, T)
|
||||
c = paddle.transpose(c, [1, 0]).unsqueeze(0)
|
||||
T = paddle.shape(c)[-1]
|
||||
wave_len = T * self.hop_length
|
||||
# TODO remove two transpose op by modifying function pad_tensor
|
||||
c = self.pad_tensor(
|
||||
c.transpose([0, 2, 1]), pad=self.aux_context_window,
|
||||
side='both').transpose([0, 2, 1])
|
||||
|
||||
c, aux = self.upsample(c)
|
||||
|
||||
if batched:
|
||||
# (num_folds, target + 2 * overlap, features)
|
||||
c = self.fold_with_overlap(c, target, overlap)
|
||||
aux = self.fold_with_overlap(aux, target, overlap)
|
||||
|
||||
# for dygraph to static graph, if use seq_len of `b_size, seq_len, _ = paddle.shape(c)` in for
|
||||
# will not get TensorArray
|
||||
# see https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/04_dygraph_to_static/case_analysis_cn.html#list-lodtensorarray
|
||||
# b_size, seq_len, _ = paddle.shape(c)
|
||||
b_size = paddle.shape(c)[0]
|
||||
seq_len = paddle.shape(c)[1]
|
||||
|
||||
h1 = paddle.zeros([b_size, self.rnn_dims])
|
||||
h2 = paddle.zeros([b_size, self.rnn_dims])
|
||||
x = paddle.zeros([b_size, 1])
|
||||
|
||||
d = self.aux_dims
|
||||
aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)]
|
||||
|
||||
for i in range(seq_len):
|
||||
m_t = c[:, i, :]
|
||||
# for dygraph to static graph
|
||||
# a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)
|
||||
a1_t = aux_split[0][:, i, :]
|
||||
a2_t = aux_split[1][:, i, :]
|
||||
a3_t = aux_split[2][:, i, :]
|
||||
a4_t = aux_split[3][:, i, :]
|
||||
x = paddle.concat([x, m_t, a1_t], axis=1)
|
||||
x = self.I(x)
|
||||
# use GRUCell here
|
||||
h1, _ = self.rnn1[0].cell(x, h1)
|
||||
x = x + h1
|
||||
inp = paddle.concat([x, a2_t], axis=1)
|
||||
# use GRUCell here
|
||||
h2, _ = self.rnn2[0].cell(inp, h2)
|
||||
|
||||
x = x + h2
|
||||
x = paddle.concat([x, a3_t], axis=1)
|
||||
x = F.relu(self.fc1(x))
|
||||
|
||||
x = paddle.concat([x, a4_t], axis=1)
|
||||
x = F.relu(self.fc2(x))
|
||||
|
||||
logits = self.fc3(x)
|
||||
|
||||
if self.mode == 'MOL':
|
||||
sample = sample_from_discretized_mix_logistic(
|
||||
logits.unsqueeze(0).transpose([0, 2, 1]))
|
||||
output.append(sample.reshape([-1]))
|
||||
x = sample.transpose([1, 0, 2])
|
||||
|
||||
elif self.mode == 'RAW':
|
||||
posterior = F.softmax(logits, axis=1)
|
||||
distrib = paddle.distribution.Categorical(posterior)
|
||||
# corresponding operate [np.floor((fx + 1) / 2 * mu + 0.5)] in enocde_mu_law
|
||||
# distrib.sample([1])[0].cast('float32'): [0, 2**bits-1]
|
||||
# sample: [-1, 1]
|
||||
sample = 2 * distrib.sample([1])[0].cast('float32') / (
|
||||
self.n_classes - 1.) - 1.
|
||||
output.append(sample)
|
||||
x = sample.unsqueeze(-1)
|
||||
else:
|
||||
raise RuntimeError('Unknown model mode value - ', self.mode)
|
||||
|
||||
if gen_display:
|
||||
if i % 1000 == 0:
|
||||
self.gen_display(i, int(seq_len), int(b_size), start)
|
||||
|
||||
output = paddle.stack(output).transpose([1, 0])
|
||||
|
||||
if mu_law:
|
||||
output = decode_mu_law(output, self.n_classes, False)
|
||||
|
||||
if batched:
|
||||
output = self.xfade_and_unfold(output, target, overlap)
|
||||
else:
|
||||
output = output[0]
|
||||
|
||||
# Fade-out at the end to avoid signal cutting out suddenly
|
||||
fade_out = paddle.linspace(1, 0, 10 * self.hop_length)
|
||||
output = output[:wave_len]
|
||||
output[-10 * self.hop_length:] *= fade_out
|
||||
|
||||
self.train()
|
||||
|
||||
# 增加 C_out 维度
|
||||
return output.unsqueeze(-1)
|
||||
|
||||
def _flatten_parameters(self):
|
||||
[m.flatten_parameters() for m in self._to_flatten]
|
||||
|
||||
def pad_tensor(self, x, pad, side='both'):
|
||||
'''
|
||||
Parameters
|
||||
----------
|
||||
x : Tensor
|
||||
mel, [1, n_frames, 80]
|
||||
pad : int
|
||||
side : str
|
||||
'both', 'before' or 'after'
|
||||
Returns
|
||||
----------
|
||||
Tensor
|
||||
'''
|
||||
b, t, _ = paddle.shape(x)
|
||||
# for dygraph to static graph
|
||||
c = x.shape[-1]
|
||||
total = t + 2 * pad if side == 'both' else t + pad
|
||||
padded = paddle.zeros([b, total, c])
|
||||
if side == 'before' or side == 'both':
|
||||
padded[:, pad:pad + t, :] = x
|
||||
elif side == 'after':
|
||||
padded[:, :t, :] = x
|
||||
return padded
|
||||
|
||||
def fold_with_overlap(self, x, target, overlap):
|
||||
'''
|
||||
Fold the tensor with overlap for quick batched inference.
|
||||
Overlap will be used for crossfading in xfade_and_unfold()
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : Tensor
|
||||
Upsampled conditioning features. mels or aux
|
||||
shape=(1, T, features)
|
||||
mels: [1, T, 80]
|
||||
aux: [1, T, 128]
|
||||
target : int
|
||||
Target timesteps for each index of batch
|
||||
overlap : int
|
||||
Timesteps for both xfade and rnn warmup
|
||||
overlap = hop_length * 2
|
||||
|
||||
Returns
|
||||
----------
|
||||
Tensor
|
||||
shape=(num_folds, target + 2 * overlap, features)
|
||||
num_flods = (time_seq - overlap) // (target + overlap)
|
||||
mel: [num_folds, target + 2 * overlap, 80]
|
||||
aux: [num_folds, target + 2 * overlap, 128]
|
||||
|
||||
Details
|
||||
----------
|
||||
x = [[h1, h2, ... hn]]
|
||||
|
||||
Where each h is a vector of conditioning features
|
||||
|
||||
Eg: target=2, overlap=1 with x.size(1)=10
|
||||
|
||||
folded = [[h1, h2, h3, h4],
|
||||
[h4, h5, h6, h7],
|
||||
[h7, h8, h9, h10]]
|
||||
'''
|
||||
|
||||
_, total_len, features = paddle.shape(x)
|
||||
|
||||
# Calculate variables needed
|
||||
num_folds = (total_len - overlap) // (target + overlap)
|
||||
extended_len = num_folds * (overlap + target) + overlap
|
||||
remaining = total_len - extended_len
|
||||
|
||||
# Pad if some time steps poking out
|
||||
if remaining != 0:
|
||||
num_folds += 1
|
||||
padding = target + 2 * overlap - remaining
|
||||
x = self.pad_tensor(x, padding, side='after')
|
||||
|
||||
folded = paddle.zeros([num_folds, target + 2 * overlap, features])
|
||||
|
||||
# Get the values for the folded tensor
|
||||
for i in range(num_folds):
|
||||
start = i * (target + overlap)
|
||||
end = start + target + 2 * overlap
|
||||
folded[i] = x[0][start:end, :]
|
||||
return folded
|
||||
|
||||
def xfade_and_unfold(self, y, target: int=12000, overlap: int=600):
|
||||
''' Applies a crossfade and unfolds into a 1d array.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : Tensor
|
||||
Batched sequences of audio samples
|
||||
shape=(num_folds, target + 2 * overlap)
|
||||
dtype=paddle.float32
|
||||
overlap : int
|
||||
Timesteps for both xfade and rnn warmup
|
||||
|
||||
Returns
|
||||
----------
|
||||
Tensor
|
||||
audio samples in a 1d array
|
||||
shape=(total_len)
|
||||
dtype=paddle.float32
|
||||
|
||||
Details
|
||||
----------
|
||||
y = [[seq1],
|
||||
[seq2],
|
||||
[seq3]]
|
||||
|
||||
Apply a gain envelope at both ends of the sequences
|
||||
|
||||
y = [[seq1_in, seq1_target, seq1_out],
|
||||
[seq2_in, seq2_target, seq2_out],
|
||||
[seq3_in, seq3_target, seq3_out]]
|
||||
|
||||
Stagger and add up the groups of samples:
|
||||
|
||||
[seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]
|
||||
|
||||
'''
|
||||
# num_folds = (total_len - overlap) // (target + overlap)
|
||||
num_folds, length = paddle.shape(y)
|
||||
target = length - 2 * overlap
|
||||
total_len = num_folds * (target + overlap) + overlap
|
||||
|
||||
# Need some silence for the run warmup
|
||||
slience_len = overlap // 2
|
||||
fade_len = overlap - slience_len
|
||||
slience = paddle.zeros([slience_len], dtype=paddle.float32)
|
||||
linear = paddle.ones([fade_len], dtype=paddle.float32)
|
||||
|
||||
# Equal power crossfade
|
||||
# fade_in increase from 0 to 1, fade_out reduces from 1 to 0
|
||||
t = paddle.linspace(-1, 1, fade_len, dtype=paddle.float32)
|
||||
fade_in = paddle.sqrt(0.5 * (1 + t))
|
||||
fade_out = paddle.sqrt(0.5 * (1 - t))
|
||||
# Concat the silence to the fades
|
||||
fade_out = paddle.concat([linear, fade_out])
|
||||
fade_in = paddle.concat([slience, fade_in])
|
||||
|
||||
# Apply the gain to the overlap samples
|
||||
y[:, :overlap] *= fade_in
|
||||
y[:, -overlap:] *= fade_out
|
||||
|
||||
unfolded = paddle.zeros([total_len], dtype=paddle.float32)
|
||||
|
||||
# Loop to add up all the samples
|
||||
for i in range(num_folds):
|
||||
start = i * (target + overlap)
|
||||
end = start + target + 2 * overlap
|
||||
unfolded[start:end] += y[i]
|
||||
|
||||
return unfolded
|
||||
|
||||
def gen_display(self, i, seq_len, b_size, start):
|
||||
gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
|
||||
pbar = self.progbar(i, seq_len)
|
||||
msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | '
|
||||
sys.stdout.write(f"\r{msg}")
|
||||
|
||||
def progbar(self, i, n, size=16):
|
||||
done = int(i * size) // n
|
||||
bar = ''
|
||||
for i in range(size):
|
||||
bar += '█' if i <= done else '░'
|
||||
return bar
|
||||
|
||||
|
||||
class WaveRNNInference(nn.Layer):
|
||||
def __init__(self, normalizer, wavernn):
|
||||
super().__init__()
|
||||
self.normalizer = normalizer
|
||||
self.wavernn = wavernn
|
||||
|
||||
def forward(self,
|
||||
logmel,
|
||||
batched: bool=True,
|
||||
target: int=12000,
|
||||
overlap: int=600,
|
||||
mu_law: bool=True,
|
||||
gen_display: bool=False):
|
||||
normalized_mel = self.normalizer(logmel)
|
||||
|
||||
wav = self.wavernn.generate(
|
||||
normalized_mel, )
|
||||
# batched=batched,
|
||||
# target=target,
|
||||
# overlap=overlap,
|
||||
# mu_law=mu_law,
|
||||
# gen_display=gen_display)
|
||||
|
||||
return wav
|
@ -0,0 +1,201 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import paddle
|
||||
import soundfile as sf
|
||||
from paddle import distributed as dist
|
||||
from paddle.io import DataLoader
|
||||
from paddle.nn import Layer
|
||||
from paddle.optimizer import Optimizer
|
||||
|
||||
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
|
||||
from paddlespeech.t2s.training.reporter import report
|
||||
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
|
||||
logging.basicConfig(
|
||||
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
|
||||
datefmt='[%Y-%m-%d %H:%M:%S]')
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
|
||||
def calculate_grad_norm(parameters, norm_type: str=2):
|
||||
'''
|
||||
calculate grad norm of mdoel's parameters
|
||||
parameters:
|
||||
model's parameters
|
||||
norm_type: str
|
||||
Returns
|
||||
------------
|
||||
Tensor
|
||||
grad_norm
|
||||
'''
|
||||
|
||||
grad_list = [
|
||||
paddle.to_tensor(p.grad) for p in parameters if p.grad is not None
|
||||
]
|
||||
norm_list = paddle.stack(
|
||||
[paddle.norm(grad, norm_type) for grad in grad_list])
|
||||
total_norm = paddle.norm(norm_list)
|
||||
return total_norm
|
||||
|
||||
|
||||
# for save name in gen_valid_samples()
|
||||
ITERATION = 0
|
||||
|
||||
|
||||
class WaveRNNUpdater(StandardUpdater):
|
||||
def __init__(self,
|
||||
model: Layer,
|
||||
optimizer: Optimizer,
|
||||
criterion: Layer,
|
||||
dataloader: DataLoader,
|
||||
init_state=None,
|
||||
output_dir: Path=None,
|
||||
mode='RAW'):
|
||||
super().__init__(model, optimizer, dataloader, init_state=None)
|
||||
|
||||
self.criterion = criterion
|
||||
# self.scheduler = scheduler
|
||||
|
||||
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
||||
self.filehandler = logging.FileHandler(str(log_file))
|
||||
logger.addHandler(self.filehandler)
|
||||
self.logger = logger
|
||||
self.msg = ""
|
||||
self.mode = mode
|
||||
|
||||
def update_core(self, batch):
|
||||
|
||||
self.msg = "Rank: {}, ".format(dist.get_rank())
|
||||
losses_dict = {}
|
||||
# parse batch
|
||||
self.model.train()
|
||||
self.optimizer.clear_grad()
|
||||
|
||||
wav, y, mel = batch
|
||||
|
||||
y_hat = self.model(wav, mel)
|
||||
if self.mode == 'RAW':
|
||||
y_hat = y_hat.transpose([0, 2, 1]).unsqueeze(-1)
|
||||
elif self.mode == 'MOL':
|
||||
y_hat = paddle.cast(y, dtype='float32')
|
||||
|
||||
y = y.unsqueeze(-1)
|
||||
loss = self.criterion(y_hat, y)
|
||||
loss.backward()
|
||||
grad_norm = float(
|
||||
calculate_grad_norm(self.model.parameters(), norm_type=2))
|
||||
|
||||
self.optimizer.step()
|
||||
|
||||
report("train/loss", float(loss))
|
||||
report("train/grad_norm", float(grad_norm))
|
||||
|
||||
losses_dict["loss"] = float(loss)
|
||||
losses_dict["grad_norm"] = float(grad_norm)
|
||||
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
||||
for k, v in losses_dict.items())
|
||||
global ITERATION
|
||||
ITERATION = self.state.iteration + 1
|
||||
|
||||
|
||||
class WaveRNNEvaluator(StandardEvaluator):
|
||||
def __init__(self,
|
||||
model: Layer,
|
||||
criterion: Layer,
|
||||
dataloader: Optimizer,
|
||||
output_dir: Path=None,
|
||||
valid_generate_loader=None,
|
||||
config=None):
|
||||
super().__init__(model, dataloader)
|
||||
|
||||
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
||||
self.filehandler = logging.FileHandler(str(log_file))
|
||||
logger.addHandler(self.filehandler)
|
||||
self.logger = logger
|
||||
self.msg = ""
|
||||
|
||||
self.criterion = criterion
|
||||
self.valid_generate_loader = valid_generate_loader
|
||||
self.config = config
|
||||
self.mode = config.model.mode
|
||||
|
||||
self.valid_samples_dir = output_dir / "valid_samples"
|
||||
self.valid_samples_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def evaluate_core(self, batch):
|
||||
self.msg = "Evaluate: "
|
||||
losses_dict = {}
|
||||
# parse batch
|
||||
wav, y, mel = batch
|
||||
y_hat = self.model(wav, mel)
|
||||
|
||||
if self.mode == 'RAW':
|
||||
y_hat = y_hat.transpose([0, 2, 1]).unsqueeze(-1)
|
||||
elif self.mode == 'MOL':
|
||||
y_hat = paddle.cast(y, dtype='float32')
|
||||
|
||||
y = y.unsqueeze(-1)
|
||||
loss = self.criterion(y_hat, y)
|
||||
report("eval/loss", float(loss))
|
||||
|
||||
losses_dict["loss"] = float(loss)
|
||||
|
||||
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
||||
for k, v in losses_dict.items())
|
||||
self.logger.info(self.msg)
|
||||
|
||||
def gen_valid_samples(self):
|
||||
|
||||
for i, item in enumerate(self.valid_generate_loader):
|
||||
if i >= self.config.generate_num:
|
||||
break
|
||||
print(
|
||||
'\n| Generating: {}/{}'.format(i + 1, self.config.generate_num))
|
||||
|
||||
mel = item['feats']
|
||||
wav = item['wave']
|
||||
wav = wav.squeeze(0)
|
||||
|
||||
origin_save_path = self.valid_samples_dir / '{}_steps_{}_target.wav'.format(
|
||||
self.iteration, i)
|
||||
sf.write(origin_save_path, wav.numpy(), samplerate=self.config.fs)
|
||||
|
||||
if self.config.inference.gen_batched:
|
||||
batch_str = 'gen_batched_target{}_overlap{}'.format(
|
||||
self.config.inference.target, self.config.inference.overlap)
|
||||
else:
|
||||
batch_str = 'gen_not_batched'
|
||||
gen_save_path = str(self.valid_samples_dir /
|
||||
'{}_steps_{}_{}.wav'.format(self.iteration, i,
|
||||
batch_str))
|
||||
# (1, T, C_aux) -> (T, C_aux)
|
||||
mel = mel.squeeze(0)
|
||||
gen_sample = self.model.generate(
|
||||
mel, self.config.inference.gen_batched,
|
||||
self.config.inference.target, self.config.inference.overlap,
|
||||
self.config.mu_law)
|
||||
sf.write(
|
||||
gen_save_path, gen_sample.numpy(), samplerate=self.config.fs)
|
||||
|
||||
def __call__(self, trainer=None):
|
||||
summary = self.evaluate()
|
||||
for k, v in summary.items():
|
||||
report(k, v)
|
||||
# gen samples at then end of evaluate
|
||||
self.iteration = ITERATION
|
||||
if self.iteration % self.config.gen_eval_samples_interval_steps == 0:
|
||||
self.gen_valid_samples()
|
Loading…
Reference in new issue