parent
3a943ca95b
commit
dc28ebe4ee
@ -0,0 +1,329 @@
|
|||||||
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import collections
|
||||||
|
import csv
|
||||||
|
import glob
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
from typing import Dict
|
||||||
|
from typing import List
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
from paddle.io import Dataset
|
||||||
|
from pathos.multiprocessing import Pool
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from paddleaudio.backends import load as load_audio
|
||||||
|
from paddleaudio.datasets.dataset import feat_funcs
|
||||||
|
from paddleaudio.utils import DATA_HOME
|
||||||
|
from paddleaudio.utils import decompress
|
||||||
|
from paddleaudio.utils import download_and_decompress
|
||||||
|
from utils.utility import download
|
||||||
|
from utils.utility import unpack
|
||||||
|
|
||||||
|
__all__ = ['VoxCeleb1']
|
||||||
|
|
||||||
|
|
||||||
|
class VoxCeleb1(Dataset):
|
||||||
|
source_url = 'https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/'
|
||||||
|
archieves_audio_dev = [
|
||||||
|
{
|
||||||
|
'url': source_url + 'vox1_dev_wav_partaa',
|
||||||
|
'md5': 'e395d020928bc15670b570a21695ed96',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'url': source_url + 'vox1_dev_wav_partab',
|
||||||
|
'md5': 'bbfaaccefab65d82b21903e81a8a8020',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'url': source_url + 'vox1_dev_wav_partac',
|
||||||
|
'md5': '017d579a2a96a077f40042ec33e51512',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'url': source_url + 'vox1_dev_wav_partad',
|
||||||
|
'md5': '7bb1e9f70fddc7a678fa998ea8b3ba19',
|
||||||
|
},
|
||||||
|
]
|
||||||
|
archieves_audio_test = [
|
||||||
|
{
|
||||||
|
'url': source_url + 'vox1_test_wav.zip',
|
||||||
|
'md5': '185fdc63c3c739954633d50379a3d102',
|
||||||
|
},
|
||||||
|
]
|
||||||
|
archieves_meta = [
|
||||||
|
{
|
||||||
|
'url':
|
||||||
|
'https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test2.txt',
|
||||||
|
'md5':
|
||||||
|
'b73110731c9223c1461fe49cb48dddfc',
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
num_speakers = 1211 # 1211 vox1, 5994 vox2, 7205 vox1+2, test speakers: 41
|
||||||
|
sample_rate = 16000
|
||||||
|
meta_info = collections.namedtuple(
|
||||||
|
'META_INFO', ('id', 'duration', 'wav', 'start', 'stop', 'spk_id'))
|
||||||
|
base_path = os.path.join(DATA_HOME, 'vox1')
|
||||||
|
wav_path = os.path.join(base_path, 'wav')
|
||||||
|
subsets = ['train', 'dev', 'enrol', 'test']
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
subset: str='train',
|
||||||
|
feat_type: str='raw',
|
||||||
|
random_chunk: bool=True,
|
||||||
|
chunk_duration: float=3.0, # seconds
|
||||||
|
split_ratio: float=0.9, # train split ratio
|
||||||
|
seed: int=0,
|
||||||
|
target_dir: str=None,
|
||||||
|
**kwargs):
|
||||||
|
|
||||||
|
assert subset in self.subsets, \
|
||||||
|
'Dataset subset must be one in {}, but got {}'.format(self.subsets, subset)
|
||||||
|
|
||||||
|
self.subset = subset
|
||||||
|
self.spk_id2label = {}
|
||||||
|
self.feat_type = feat_type
|
||||||
|
self.feat_config = kwargs
|
||||||
|
self.random_chunk = random_chunk
|
||||||
|
self.chunk_duration = chunk_duration
|
||||||
|
self.split_ratio = split_ratio
|
||||||
|
self.target_dir = target_dir if target_dir else self.base_path
|
||||||
|
self.csv_path = os.path.join(
|
||||||
|
target_dir, 'csv') if target_dir else os.path.join(self.base_path,
|
||||||
|
'csv')
|
||||||
|
self.meta_path = os.path.join(
|
||||||
|
target_dir, 'meta') if target_dir else os.path.join(self.base_path,
|
||||||
|
'meta')
|
||||||
|
self.veri_test_file = os.path.join(self.meta_path, 'veri_test2.txt')
|
||||||
|
# self._data = self._get_data()[:1000] # KP: Small dataset test.
|
||||||
|
self._data = self._get_data()
|
||||||
|
super(VoxCeleb1, self).__init__()
|
||||||
|
|
||||||
|
# Set up a seed to reproduce training or predicting result.
|
||||||
|
# random.seed(seed)
|
||||||
|
|
||||||
|
def _get_data(self):
|
||||||
|
# Download audio files.
|
||||||
|
# We need the users to decompress all vox1/dev/wav and vox1/test/wav/ to vox1/wav/ dir
|
||||||
|
# so, we check the vox1/wav dir status
|
||||||
|
print("wav base path: {}".format(self.wav_path))
|
||||||
|
if not os.path.isdir(self.wav_path):
|
||||||
|
print("start to download the voxceleb1 dataset")
|
||||||
|
download_and_decompress( # multi-zip parts concatenate to vox1_dev_wav.zip
|
||||||
|
self.archieves_audio_dev,
|
||||||
|
self.base_path,
|
||||||
|
decompress=False)
|
||||||
|
download_and_decompress( # download the vox1_test_wav.zip and unzip
|
||||||
|
self.archieves_audio_test,
|
||||||
|
self.base_path,
|
||||||
|
decompress=True)
|
||||||
|
|
||||||
|
# Download all parts and concatenate the files into one zip file.
|
||||||
|
dev_zipfile = os.path.join(self.base_path, 'vox1_dev_wav.zip')
|
||||||
|
print(f'Concatenating all parts to: {dev_zipfile}')
|
||||||
|
os.system(
|
||||||
|
f'cat {os.path.join(self.base_path, "vox1_dev_wav_parta*")} > {dev_zipfile}'
|
||||||
|
)
|
||||||
|
|
||||||
|
# Extract all audio files of dev and test set.
|
||||||
|
decompress(dev_zipfile, self.base_path)
|
||||||
|
|
||||||
|
# Download meta files.
|
||||||
|
if not os.path.isdir(self.meta_path):
|
||||||
|
download_and_decompress(
|
||||||
|
self.archieves_meta, self.meta_path, decompress=False)
|
||||||
|
|
||||||
|
# Data preparation.
|
||||||
|
if not os.path.isdir(self.csv_path):
|
||||||
|
os.makedirs(self.csv_path)
|
||||||
|
self.prepare_data()
|
||||||
|
|
||||||
|
data = []
|
||||||
|
with open(os.path.join(self.csv_path, f'{self.subset}.csv'), 'r') as rf:
|
||||||
|
for line in rf.readlines()[1:]:
|
||||||
|
audio_id, duration, wav, start, stop, spk_id = line.strip(
|
||||||
|
).split(',')
|
||||||
|
data.append(
|
||||||
|
self.meta_info(audio_id,
|
||||||
|
float(duration), wav,
|
||||||
|
int(start), int(stop), spk_id))
|
||||||
|
|
||||||
|
with open(os.path.join(self.meta_path, 'spk_id2label.txt'), 'r') as f:
|
||||||
|
for line in f.readlines():
|
||||||
|
spk_id, label = line.strip().split(' ')
|
||||||
|
self.spk_id2label[spk_id] = int(label)
|
||||||
|
|
||||||
|
return data
|
||||||
|
|
||||||
|
def _convert_to_record(self, idx: int):
|
||||||
|
sample = self._data[idx]
|
||||||
|
|
||||||
|
record = {}
|
||||||
|
# To show all fields in a namedtuple: `type(sample)._fields`
|
||||||
|
for field in type(sample)._fields:
|
||||||
|
record[field] = getattr(sample, field)
|
||||||
|
|
||||||
|
waveform, sr = load_audio(record['wav'])
|
||||||
|
|
||||||
|
# random select a chunk audio samples from the audio
|
||||||
|
if self.random_chunk:
|
||||||
|
num_wav_samples = waveform.shape[0]
|
||||||
|
num_chunk_samples = int(self.chunk_duration * sr)
|
||||||
|
start = random.randint(0, num_wav_samples - num_chunk_samples - 1)
|
||||||
|
stop = start + num_chunk_samples
|
||||||
|
else:
|
||||||
|
start = record['start']
|
||||||
|
stop = record['stop']
|
||||||
|
|
||||||
|
waveform = waveform[start:stop]
|
||||||
|
|
||||||
|
assert self.feat_type in feat_funcs.keys(), \
|
||||||
|
f"Unknown feat_type: {self.feat_type}, it must be one in {list(feat_funcs.keys())}"
|
||||||
|
feat_func = feat_funcs[self.feat_type]
|
||||||
|
feat = feat_func(
|
||||||
|
waveform, sr=sr, **self.feat_config) if feat_func else waveform
|
||||||
|
|
||||||
|
record.update({'feat': feat})
|
||||||
|
if self.subset in ['train',
|
||||||
|
'dev']: # Labels are available in train and dev.
|
||||||
|
record.update({'label': self.spk_id2label[record['spk_id']]})
|
||||||
|
|
||||||
|
return record
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _get_chunks(seg_dur, audio_id, audio_duration):
|
||||||
|
num_chunks = int(audio_duration / seg_dur) # all in milliseconds
|
||||||
|
|
||||||
|
chunk_lst = [
|
||||||
|
audio_id + "_" + str(i * seg_dur) + "_" + str(i * seg_dur + seg_dur)
|
||||||
|
for i in range(num_chunks)
|
||||||
|
]
|
||||||
|
return chunk_lst
|
||||||
|
|
||||||
|
def _get_audio_info(self, wav_file: str,
|
||||||
|
split_chunks: bool) -> List[List[str]]:
|
||||||
|
waveform, sr = load_audio(wav_file)
|
||||||
|
spk_id, sess_id, utt_id = wav_file.split("/")[-3:]
|
||||||
|
audio_id = '-'.join([spk_id, sess_id, utt_id.split(".")[0]])
|
||||||
|
audio_duration = waveform.shape[0] / sr
|
||||||
|
|
||||||
|
ret = []
|
||||||
|
if split_chunks: # Split into pieces of self.chunk_duration seconds.
|
||||||
|
uniq_chunks_list = self._get_chunks(self.chunk_duration, audio_id,
|
||||||
|
audio_duration)
|
||||||
|
|
||||||
|
for chunk in uniq_chunks_list:
|
||||||
|
s, e = chunk.split("_")[-2:] # Timestamps of start and end
|
||||||
|
start_sample = int(float(s) * sr)
|
||||||
|
end_sample = int(float(e) * sr)
|
||||||
|
# id, duration, wav, start, stop, spk_id
|
||||||
|
ret.append([
|
||||||
|
chunk, audio_duration, wav_file, start_sample, end_sample,
|
||||||
|
spk_id
|
||||||
|
])
|
||||||
|
else: # Keep whole audio.
|
||||||
|
ret.append([
|
||||||
|
audio_id, audio_duration, wav_file, 0, waveform.shape[0], spk_id
|
||||||
|
])
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def generate_csv(self,
|
||||||
|
wav_files: List[str],
|
||||||
|
output_file: str,
|
||||||
|
split_chunks: bool=True):
|
||||||
|
print(f'Generating csv: {output_file}')
|
||||||
|
header = ["id", "duration", "wav", "start", "stop", "spk_id"]
|
||||||
|
|
||||||
|
with Pool(64) as p:
|
||||||
|
infos = list(
|
||||||
|
tqdm(
|
||||||
|
p.imap(lambda x: self._get_audio_info(x, split_chunks),
|
||||||
|
wav_files),
|
||||||
|
total=len(wav_files)))
|
||||||
|
|
||||||
|
csv_lines = []
|
||||||
|
for info in infos:
|
||||||
|
csv_lines.extend(info)
|
||||||
|
|
||||||
|
with open(output_file, mode="w") as csv_f:
|
||||||
|
csv_writer = csv.writer(
|
||||||
|
csv_f, delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL)
|
||||||
|
csv_writer.writerow(header)
|
||||||
|
for line in csv_lines:
|
||||||
|
csv_writer.writerow(line)
|
||||||
|
|
||||||
|
def prepare_data(self):
|
||||||
|
# Audio of speakers in veri_test_file should not be included in training set.
|
||||||
|
print("start to prepare the data csv file")
|
||||||
|
enrol_files = set()
|
||||||
|
test_files = set()
|
||||||
|
# get the enroll and test audio file path
|
||||||
|
with open(self.veri_test_file, 'r') as f:
|
||||||
|
for line in f.readlines():
|
||||||
|
_, enrol_file, test_file = line.strip().split(' ')
|
||||||
|
enrol_files.add(os.path.join(self.wav_path, enrol_file))
|
||||||
|
test_files.add(os.path.join(self.wav_path, test_file))
|
||||||
|
enrol_files = sorted(enrol_files)
|
||||||
|
test_files = sorted(test_files)
|
||||||
|
|
||||||
|
# get the enroll and test speakers
|
||||||
|
test_spks = set()
|
||||||
|
for file in (enrol_files + test_files):
|
||||||
|
spk = file.split('/wav/')[1].split('/')[0]
|
||||||
|
test_spks.add(spk)
|
||||||
|
|
||||||
|
# get all the train and dev audios file path
|
||||||
|
audio_files = []
|
||||||
|
speakers = set()
|
||||||
|
for path in [self.wav_path]:
|
||||||
|
for file in glob.glob(
|
||||||
|
os.path.join(path, "**", "*.wav"), recursive=True):
|
||||||
|
spk = file.split('/wav/')[1].split('/')[0]
|
||||||
|
if spk in test_spks:
|
||||||
|
continue
|
||||||
|
speakers.add(spk)
|
||||||
|
audio_files.append(file)
|
||||||
|
|
||||||
|
print("start to generate the {}".format(
|
||||||
|
os.path.join(self.meta_path, 'spk_id2label.txt')))
|
||||||
|
# encode the train and dev speakers label to spk_id2label.txt
|
||||||
|
with open(os.path.join(self.meta_path, 'spk_id2label.txt'), 'w') as f:
|
||||||
|
for label, spk_id in enumerate(
|
||||||
|
sorted(speakers)): # 1211 vox1, 5994 vox2, 7205 vox1+2
|
||||||
|
f.write(f'{spk_id} {label}\n')
|
||||||
|
|
||||||
|
audio_files = sorted(audio_files)
|
||||||
|
random.shuffle(audio_files)
|
||||||
|
split_idx = int(self.split_ratio * len(audio_files))
|
||||||
|
# split_ratio to train
|
||||||
|
train_files, dev_files = audio_files[:split_idx], audio_files[
|
||||||
|
split_idx:]
|
||||||
|
|
||||||
|
self.generate_csv(train_files, os.path.join(self.csv_path, 'train.csv'))
|
||||||
|
self.generate_csv(dev_files, os.path.join(self.csv_path, 'dev.csv'))
|
||||||
|
self.generate_csv(
|
||||||
|
enrol_files,
|
||||||
|
os.path.join(self.csv_path, 'enrol.csv'),
|
||||||
|
split_chunks=False)
|
||||||
|
self.generate_csv(
|
||||||
|
test_files,
|
||||||
|
os.path.join(self.csv_path, 'test.csv'),
|
||||||
|
split_chunks=False)
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
return self._convert_to_record(idx)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self._data)
|
Loading…
Reference in new issue