|
|
@ -8,7 +8,7 @@ data:
|
|
|
|
spm_model_prefix: 'data/bpe_unigram_5000'
|
|
|
|
spm_model_prefix: 'data/bpe_unigram_5000'
|
|
|
|
mean_std_filepath: ""
|
|
|
|
mean_std_filepath: ""
|
|
|
|
augmentation_config: conf/augmentation.json
|
|
|
|
augmentation_config: conf/augmentation.json
|
|
|
|
batch_size: 64
|
|
|
|
batch_size: 16
|
|
|
|
min_input_len: 0.5 # seconds
|
|
|
|
min_input_len: 0.5 # seconds
|
|
|
|
max_input_len: 20.0 # seconds
|
|
|
|
max_input_len: 20.0 # seconds
|
|
|
|
min_output_len: 0.0 # tokens
|
|
|
|
min_output_len: 0.0 # tokens
|
|
|
@ -76,7 +76,7 @@ model:
|
|
|
|
|
|
|
|
|
|
|
|
training:
|
|
|
|
training:
|
|
|
|
n_epoch: 120
|
|
|
|
n_epoch: 120
|
|
|
|
accum_grad: 2
|
|
|
|
accum_grad: 8
|
|
|
|
global_grad_clip: 5.0
|
|
|
|
global_grad_clip: 5.0
|
|
|
|
optim: adam
|
|
|
|
optim: adam
|
|
|
|
optim_conf:
|
|
|
|
optim_conf:
|
|
|
@ -100,7 +100,7 @@ decoding:
|
|
|
|
cutoff_prob: 1.0
|
|
|
|
cutoff_prob: 1.0
|
|
|
|
cutoff_top_n: 0
|
|
|
|
cutoff_top_n: 0
|
|
|
|
num_proc_bsearch: 8
|
|
|
|
num_proc_bsearch: 8
|
|
|
|
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
|
|
|
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
|
|
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
|
|
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
|
|
|
# <0: for decoding, use full chunk.
|
|
|
|
# <0: for decoding, use full chunk.
|
|
|
|
# >0: for decoding, use fixed chunk size as set.
|
|
|
|
# >0: for decoding, use fixed chunk size as set.
|
|
|
|