improve params tuning strategy for CTC beam search decoder

pull/2/head
Yibing Liu 8 years ago
parent 7e39debcb0
commit d43b33c12d

@ -15,10 +15,10 @@ import utils
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--num_samples",
default=100,
"--batch_size",
default=128,
type=int,
help="Number of samples for parameters tuning. (default: %(default)s)")
help="Minibatch size for parameters tuning. (default: %(default)s)")
parser.add_argument(
"--num_conv_layers",
default=2,
@ -51,7 +51,7 @@ parser.add_argument(
help="Number of cpu threads for preprocessing data. (default: %(default)s)")
parser.add_argument(
"--num_processes_beam_search",
default=multiprocessing.cpu_count() // 2,
default=multiprocessing.cpu_count(),
type=int,
help="Number of cpu processes for beam search. (default: %(default)s)")
parser.add_argument(
@ -130,7 +130,12 @@ args = parser.parse_args()
def tune():
"""Tune parameters alpha and beta on one minibatch."""
"""Tune parameters alpha and beta for the CTC beam search decoder
incrementally. The optimal parameters up to now would be output real time
at the end of each minibatch data, until all the development data is
taken into account. And the tuning process can be terminated at any time
as long as the two parameters get stable.
"""
if not args.num_alphas >= 0:
raise ValueError("num_alphas must be non-negative!")
if not args.num_betas >= 0:
@ -144,14 +149,9 @@ def tune():
num_threads=args.num_threads_data)
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.tune_manifest_path,
batch_size=args.num_samples,
batch_size=args.batch_size,
sortagrad=False,
shuffle_method=None)
tune_data = batch_reader().next()
target_transcripts = [
''.join([data_generator.vocab_list[token] for token in transcript])
for _, transcript in tune_data
]
ds2_model = DeepSpeech2Model(
vocab_size=data_generator.vocab_size,
@ -166,24 +166,44 @@ def tune():
params_grid = [(alpha, beta) for alpha in cand_alphas
for beta in cand_betas]
## tune parameters in loop
for alpha, beta in params_grid:
result_transcripts = ds2_model.infer_batch(
infer_data=tune_data,
decode_method='beam_search',
beam_alpha=alpha,
beam_beta=beta,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
vocab_list=data_generator.vocab_list,
language_model_path=args.language_model_path,
num_processes=args.num_processes_beam_search)
wer_sum, num_ins = 0.0, 0
for target, result in zip(target_transcripts, result_transcripts):
wer_sum += wer(target, result)
num_ins += 1
print("alpha = %f\tbeta = %f\tWER = %f" %
(alpha, beta, wer_sum / num_ins))
wer_sum = [0.0 for i in xrange(len(params_grid))]
ave_wer = [0.0 for i in xrange(len(params_grid))]
num_ins = 0
num_batches = 0
## incremental tuning parameters over multiple batches
for infer_data in batch_reader():
target_transcripts = [
''.join([data_generator.vocab_list[token] for token in transcript])
for _, transcript in infer_data
]
num_ins += len(target_transcripts)
# grid search
for index, (alpha, beta) in enumerate(params_grid):
result_transcripts = ds2_model.infer_batch(
infer_data=infer_data,
decode_method='beam_search',
beam_alpha=alpha,
beam_beta=beta,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
vocab_list=data_generator.vocab_list,
language_model_path=args.language_model_path,
num_processes=args.num_processes_beam_search)
for target, result in zip(target_transcripts, result_transcripts):
wer_sum[index] += wer(target, result)
ave_wer[index] = wer_sum[index] / num_ins
print("alpha = %f, beta = %f, WER = %f" %
(alpha, beta, ave_wer[index]))
# output on-line tuning result at the the end of current batch
ave_wer_min = min(ave_wer)
min_index = ave_wer.index(ave_wer_min)
print("Finish batch %d, optimal (alpha, beta, WER) = (%f, %f, %f)\n" %
(num_batches, params_grid[min_index][0],
params_grid[min_index][1], ave_wer_min))
num_batches += 1
def main():

Loading…
Cancel
Save