|
|
|
@ -15,10 +15,10 @@ import utils
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--num_samples",
|
|
|
|
|
default=100,
|
|
|
|
|
"--batch_size",
|
|
|
|
|
default=128,
|
|
|
|
|
type=int,
|
|
|
|
|
help="Number of samples for parameters tuning. (default: %(default)s)")
|
|
|
|
|
help="Minibatch size for parameters tuning. (default: %(default)s)")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--num_conv_layers",
|
|
|
|
|
default=2,
|
|
|
|
@ -51,7 +51,7 @@ parser.add_argument(
|
|
|
|
|
help="Number of cpu threads for preprocessing data. (default: %(default)s)")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--num_processes_beam_search",
|
|
|
|
|
default=multiprocessing.cpu_count() // 2,
|
|
|
|
|
default=multiprocessing.cpu_count(),
|
|
|
|
|
type=int,
|
|
|
|
|
help="Number of cpu processes for beam search. (default: %(default)s)")
|
|
|
|
|
parser.add_argument(
|
|
|
|
@ -130,7 +130,12 @@ args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def tune():
|
|
|
|
|
"""Tune parameters alpha and beta on one minibatch."""
|
|
|
|
|
"""Tune parameters alpha and beta for the CTC beam search decoder
|
|
|
|
|
incrementally. The optimal parameters up to now would be output real time
|
|
|
|
|
at the end of each minibatch data, until all the development data is
|
|
|
|
|
taken into account. And the tuning process can be terminated at any time
|
|
|
|
|
as long as the two parameters get stable.
|
|
|
|
|
"""
|
|
|
|
|
if not args.num_alphas >= 0:
|
|
|
|
|
raise ValueError("num_alphas must be non-negative!")
|
|
|
|
|
if not args.num_betas >= 0:
|
|
|
|
@ -144,14 +149,9 @@ def tune():
|
|
|
|
|
num_threads=args.num_threads_data)
|
|
|
|
|
batch_reader = data_generator.batch_reader_creator(
|
|
|
|
|
manifest_path=args.tune_manifest_path,
|
|
|
|
|
batch_size=args.num_samples,
|
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
|
sortagrad=False,
|
|
|
|
|
shuffle_method=None)
|
|
|
|
|
tune_data = batch_reader().next()
|
|
|
|
|
target_transcripts = [
|
|
|
|
|
''.join([data_generator.vocab_list[token] for token in transcript])
|
|
|
|
|
for _, transcript in tune_data
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
ds2_model = DeepSpeech2Model(
|
|
|
|
|
vocab_size=data_generator.vocab_size,
|
|
|
|
@ -166,24 +166,44 @@ def tune():
|
|
|
|
|
params_grid = [(alpha, beta) for alpha in cand_alphas
|
|
|
|
|
for beta in cand_betas]
|
|
|
|
|
|
|
|
|
|
## tune parameters in loop
|
|
|
|
|
for alpha, beta in params_grid:
|
|
|
|
|
result_transcripts = ds2_model.infer_batch(
|
|
|
|
|
infer_data=tune_data,
|
|
|
|
|
decode_method='beam_search',
|
|
|
|
|
beam_alpha=alpha,
|
|
|
|
|
beam_beta=beta,
|
|
|
|
|
beam_size=args.beam_size,
|
|
|
|
|
cutoff_prob=args.cutoff_prob,
|
|
|
|
|
vocab_list=data_generator.vocab_list,
|
|
|
|
|
language_model_path=args.language_model_path,
|
|
|
|
|
num_processes=args.num_processes_beam_search)
|
|
|
|
|
wer_sum, num_ins = 0.0, 0
|
|
|
|
|
for target, result in zip(target_transcripts, result_transcripts):
|
|
|
|
|
wer_sum += wer(target, result)
|
|
|
|
|
num_ins += 1
|
|
|
|
|
print("alpha = %f\tbeta = %f\tWER = %f" %
|
|
|
|
|
(alpha, beta, wer_sum / num_ins))
|
|
|
|
|
wer_sum = [0.0 for i in xrange(len(params_grid))]
|
|
|
|
|
ave_wer = [0.0 for i in xrange(len(params_grid))]
|
|
|
|
|
num_ins = 0
|
|
|
|
|
num_batches = 0
|
|
|
|
|
## incremental tuning parameters over multiple batches
|
|
|
|
|
for infer_data in batch_reader():
|
|
|
|
|
target_transcripts = [
|
|
|
|
|
''.join([data_generator.vocab_list[token] for token in transcript])
|
|
|
|
|
for _, transcript in infer_data
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
num_ins += len(target_transcripts)
|
|
|
|
|
# grid search
|
|
|
|
|
for index, (alpha, beta) in enumerate(params_grid):
|
|
|
|
|
result_transcripts = ds2_model.infer_batch(
|
|
|
|
|
infer_data=infer_data,
|
|
|
|
|
decode_method='beam_search',
|
|
|
|
|
beam_alpha=alpha,
|
|
|
|
|
beam_beta=beta,
|
|
|
|
|
beam_size=args.beam_size,
|
|
|
|
|
cutoff_prob=args.cutoff_prob,
|
|
|
|
|
vocab_list=data_generator.vocab_list,
|
|
|
|
|
language_model_path=args.language_model_path,
|
|
|
|
|
num_processes=args.num_processes_beam_search)
|
|
|
|
|
|
|
|
|
|
for target, result in zip(target_transcripts, result_transcripts):
|
|
|
|
|
wer_sum[index] += wer(target, result)
|
|
|
|
|
ave_wer[index] = wer_sum[index] / num_ins
|
|
|
|
|
print("alpha = %f, beta = %f, WER = %f" %
|
|
|
|
|
(alpha, beta, ave_wer[index]))
|
|
|
|
|
|
|
|
|
|
# output on-line tuning result at the the end of current batch
|
|
|
|
|
ave_wer_min = min(ave_wer)
|
|
|
|
|
min_index = ave_wer.index(ave_wer_min)
|
|
|
|
|
print("Finish batch %d, optimal (alpha, beta, WER) = (%f, %f, %f)\n" %
|
|
|
|
|
(num_batches, params_grid[min_index][0],
|
|
|
|
|
params_grid[min_index][1], ave_wer_min))
|
|
|
|
|
num_batches += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|