@ -13,8 +13,7 @@
# limitations under the License.
# limitations under the License.
import paddle
import paddle
from paddle import nn
from paddle import nn
import math
from paddlespeech . s2t . modules . initializer import KaimingUniform
"""
"""
To align the initializer between paddle and torch ,
To align the initializer between paddle and torch ,
the API below are set defalut initializer with priority higger than global initializer .
the API below are set defalut initializer with priority higger than global initializer .
@ -82,10 +81,10 @@ class Linear(nn.Linear):
name = None ) :
name = None ) :
if weight_attr is None :
if weight_attr is None :
if global_init_type == " kaiming_uniform " :
if global_init_type == " kaiming_uniform " :
weight_attr = paddle . ParamAttr ( initializer = KaimingUniform( ) )
weight_attr = paddle . ParamAttr ( initializer = nn. initializer . KaimingUniform( fan_in = None , negative_slope = math . sqrt ( 5 ) , nonlinearity = ' leaky_relu ' ) )
if bias_attr is None :
if bias_attr is None :
if global_init_type == " kaiming_uniform " :
if global_init_type == " kaiming_uniform " :
bias_attr = paddle . ParamAttr ( initializer = KaimingUniform( ) )
bias_attr = paddle . ParamAttr ( initializer = nn. initializer . KaimingUniform( fan_in = None , negative_slope = math . sqrt ( 5 ) , nonlinearity = ' leaky_relu ' ) )
super ( Linear , self ) . __init__ ( in_features , out_features , weight_attr ,
super ( Linear , self ) . __init__ ( in_features , out_features , weight_attr ,
bias_attr , name )
bias_attr , name )
@ -105,10 +104,10 @@ class Conv1D(nn.Conv1D):
data_format = ' NCL ' ) :
data_format = ' NCL ' ) :
if weight_attr is None :
if weight_attr is None :
if global_init_type == " kaiming_uniform " :
if global_init_type == " kaiming_uniform " :
weight_attr = paddle . ParamAttr ( initializer = KaimingUniform( ) )
weight_attr = paddle . ParamAttr ( initializer = nn. initializer . KaimingUniform( fan_in = None , negative_slope = math . sqrt ( 5 ) , nonlinearity = ' leaky_relu ' ) )
if bias_attr is None :
if bias_attr is None :
if global_init_type == " kaiming_uniform " :
if global_init_type == " kaiming_uniform " :
bias_attr = paddle . ParamAttr ( initializer = KaimingUniform( ) )
bias_attr = paddle . ParamAttr ( initializer = nn. initializer . KaimingUniform( fan_in = None , negative_slope = math . sqrt ( 5 ) , nonlinearity = ' leaky_relu ' ) )
super ( Conv1D , self ) . __init__ (
super ( Conv1D , self ) . __init__ (
in_channels , out_channels , kernel_size , stride , padding , dilation ,
in_channels , out_channels , kernel_size , stride , padding , dilation ,
groups , padding_mode , weight_attr , bias_attr , data_format )
groups , padding_mode , weight_attr , bias_attr , data_format )
@ -129,10 +128,10 @@ class Conv2D(nn.Conv2D):
data_format = ' NCHW ' ) :
data_format = ' NCHW ' ) :
if weight_attr is None :
if weight_attr is None :
if global_init_type == " kaiming_uniform " :
if global_init_type == " kaiming_uniform " :
weight_attr = paddle . ParamAttr ( initializer = KaimingUniform( ) )
weight_attr = paddle . ParamAttr ( initializer = nn. initializer . KaimingUniform( fan_in = None , negative_slope = math . sqrt ( 5 ) , nonlinearity = ' leaky_relu ' ) )
if bias_attr is None :
if bias_attr is None :
if global_init_type == " kaiming_uniform " :
if global_init_type == " kaiming_uniform " :
bias_attr = paddle . ParamAttr ( initializer = KaimingUniform( ) )
bias_attr = paddle . ParamAttr ( initializer = nn. initializer . KaimingUniform( fan_in = None , negative_slope = math . sqrt ( 5 ) , nonlinearity = ' leaky_relu ' ) )
super ( Conv2D , self ) . __init__ (
super ( Conv2D , self ) . __init__ (
in_channels , out_channels , kernel_size , stride , padding , dilation ,
in_channels , out_channels , kernel_size , stride , padding , dilation ,
groups , padding_mode , weight_attr , bias_attr , data_format )
groups , padding_mode , weight_attr , bias_attr , data_format )