|
|
@ -32,7 +32,7 @@ Decodable::Decodable(const std::shared_ptr<NnetInterface>& nnet,
|
|
|
|
|
|
|
|
|
|
|
|
// for debug
|
|
|
|
// for debug
|
|
|
|
void Decodable::Acceptlikelihood(const Matrix<BaseFloat>& likelihood) {
|
|
|
|
void Decodable::Acceptlikelihood(const Matrix<BaseFloat>& likelihood) {
|
|
|
|
nnet_cache_ = likelihood;
|
|
|
|
nnet_out_cache_ = likelihood;
|
|
|
|
frames_ready_ += likelihood.NumRows();
|
|
|
|
frames_ready_ += likelihood.NumRows();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -56,13 +56,13 @@ int32 Decodable::NumIndices() const { return 0; }
|
|
|
|
int32 Decodable::TokenId2NnetId(int32 token_id) { return token_id - 1; }
|
|
|
|
int32 Decodable::TokenId2NnetId(int32 token_id) { return token_id - 1; }
|
|
|
|
|
|
|
|
|
|
|
|
BaseFloat Decodable::LogLikelihood(int32 frame, int32 index) {
|
|
|
|
BaseFloat Decodable::LogLikelihood(int32 frame, int32 index) {
|
|
|
|
CHECK_LE(index, nnet_cache_.NumCols());
|
|
|
|
CHECK_LE(index, nnet_out_cache_.NumCols());
|
|
|
|
CHECK_LE(frame, frames_ready_);
|
|
|
|
CHECK_LE(frame, frames_ready_);
|
|
|
|
int32 frame_idx = frame - frame_offset_;
|
|
|
|
int32 frame_idx = frame - frame_offset_;
|
|
|
|
// the nnet output is prob ranther than log prob
|
|
|
|
// the nnet output is prob ranther than log prob
|
|
|
|
// the index - 1, because the ilabel
|
|
|
|
// the index - 1, because the ilabel
|
|
|
|
return acoustic_scale_ *
|
|
|
|
return acoustic_scale_ *
|
|
|
|
std::log(nnet_cache_(frame_idx, TokenId2NnetId(index)) +
|
|
|
|
std::log(nnet_out_cache_(frame_idx, TokenId2NnetId(index)) +
|
|
|
|
std::numeric_limits<float>::min());
|
|
|
|
std::numeric_limits<float>::min());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -82,17 +82,18 @@ bool Decodable::AdvanceChunk() {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// forward feats
|
|
|
|
// forward feats
|
|
|
|
int32 vocab_dim = 0;
|
|
|
|
NnetOut out;
|
|
|
|
Vector<BaseFloat> probs;
|
|
|
|
nnet_->FeedForward(features, frontend_->Dim(), &out);
|
|
|
|
nnet_->FeedForward(features, frontend_->Dim(), &probs, &vocab_dim);
|
|
|
|
int32& vocab_dim = out.vocab_dim;
|
|
|
|
|
|
|
|
Vector<BaseFloat>& probs = out.logprobs;
|
|
|
|
|
|
|
|
|
|
|
|
// cache nnet outupts
|
|
|
|
// cache nnet outupts
|
|
|
|
nnet_cache_.Resize(probs.Dim() / vocab_dim, vocab_dim);
|
|
|
|
nnet_out_cache_.Resize(probs.Dim() / vocab_dim, vocab_dim);
|
|
|
|
nnet_cache_.CopyRowsFromVec(probs);
|
|
|
|
nnet_out_cache_.CopyRowsFromVec(probs);
|
|
|
|
|
|
|
|
|
|
|
|
// update state
|
|
|
|
// update state
|
|
|
|
frame_offset_ = frames_ready_;
|
|
|
|
frame_offset_ = frames_ready_;
|
|
|
|
frames_ready_ += nnet_cache_.NumRows();
|
|
|
|
frames_ready_ += nnet_out_cache_.NumRows();
|
|
|
|
return true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -102,12 +103,12 @@ bool Decodable::FrameLikelihood(int32 frame, vector<BaseFloat>* likelihood) {
|
|
|
|
return false;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int vocab_size = nnet_cache_.NumCols();
|
|
|
|
int vocab_size = nnet_out_cache_.NumCols();
|
|
|
|
likelihood->resize(vocab_size);
|
|
|
|
likelihood->resize(vocab_size);
|
|
|
|
|
|
|
|
|
|
|
|
for (int32 idx = 0; idx < vocab_size; ++idx) {
|
|
|
|
for (int32 idx = 0; idx < vocab_size; ++idx) {
|
|
|
|
(*likelihood)[idx] =
|
|
|
|
(*likelihood)[idx] =
|
|
|
|
nnet_cache_(frame - frame_offset_, idx) * acoustic_scale_;
|
|
|
|
nnet_out_cache_(frame - frame_offset_, idx) * acoustic_scale_;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
@ -117,7 +118,7 @@ void Decodable::Reset() {
|
|
|
|
if (nnet_ != nullptr) nnet_->Reset();
|
|
|
|
if (nnet_ != nullptr) nnet_->Reset();
|
|
|
|
frame_offset_ = 0;
|
|
|
|
frame_offset_ = 0;
|
|
|
|
frames_ready_ = 0;
|
|
|
|
frames_ready_ = 0;
|
|
|
|
nnet_cache_.Resize(0, 0);
|
|
|
|
nnet_out_cache_.Resize(0, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} // namespace ppspeech
|
|
|
|
} // namespace ppspeech
|