change all recipes

pull/1225/head
huangyuxin 3 years ago
parent 5d6494decc
commit c907a8deda

@ -1,68 +1,64 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 0
ctc_grad_norm_type: instance
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 0
ctc_grad_norm_type: instance
training:
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
###########################################
# Training #
###########################################
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 128
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 1.9
beta: 5.0
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 10

@ -1,70 +1,68 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear #linear, mfcc, fbank
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
###########################################
# Dataloader #
###########################################
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear #linear, mfcc, fbank
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
model:
num_conv_layers: 2
num_rnn_layers: 5
rnn_layer_size: 1024
rnn_direction: forward # [forward, bidirect]
num_fc_layers: 0
fc_layers_size_list: -1,
use_gru: False
blank_id: 0
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 5
rnn_layer_size: 1024
rnn_direction: forward # [forward, bidirect]
num_fc_layers: 0
fc_layers_size_list: -1,
use_gru: False
blank_id: 0
training:
n_epoch: 65
accum_grad: 1
lr: 5e-4
lr_decay: 0.93
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
###########################################
# Training #
###########################################
n_epoch: 65
accum_grad: 1
lr: 5e-4
lr_decay: 0.93
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 32
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 2.2 #1.9
beta: 4.3
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 10

@ -0,0 +1,10 @@
chunk_batch_size: 32
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 2.2 #1.9
beta: 4.3
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 10

@ -0,0 +1,10 @@
decode_batch_size: 128
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 1.9
beta: 5.0
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 10

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_ch.sh
@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
jit_model_export_path=$2
model_type=$3
decode_config_path=$2
jit_model_export_path=$3
model_type=$4
# download language model
bash local/download_lm_ch.sh > /dev/null 2>&1
@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test_export.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${jit_model_export_path}.rsl \
--export_path ${jit_model_export_path} \
--model_type ${model_type}

@ -0,0 +1,47 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type audio_file"
exit -1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
audio_file=$4
mkdir -p data
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/zh/demo_01_03.wav -P data/
if [ $? -ne 0 ]; then
exit 1
fi
if [ ! -f ${audio_file} ]; then
echo "Plase input the right audio_file path"
exit 1
fi
# download language model
bash local/download_lm_ch.sh
if [ $? -ne 0 ]; then
exit 1
fi
python3 -u ${BIN_DIR}/test_hub.py \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type} \
--audio_file ${audio_file}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
exit 0

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type audio_file"
if [ $# != 5 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type audio_file"
exit -1
fi
@ -9,9 +9,10 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
audio_file=$4
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
audio_file=$5
mkdir -p data
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/zh/demo_01_03.wav -P data/
@ -33,6 +34,7 @@ fi
python3 -u ${BIN_DIR}/test_wav.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type} \

@ -6,6 +6,7 @@ gpus=0,1,2,3
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml #conf/deepspeech2.yaml or conf/deepspeeech2_online.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
model_type=offline # offline or online
audio_file=data/demo_01_03.wav
@ -34,7 +35,7 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type}|| exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
@ -44,11 +45,11 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# test export ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test_export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_export.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}|| exit -1
fi
# Optionally, you can add LM and test it with runtime.
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} || exit -1
fi

@ -54,8 +54,9 @@ test_manifest: data/manifest.test
###########################################
vocab_filepath: data/lang_char/vocab.txt
spm_model_prefix: ''
unit_type: 'char'
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
@ -74,7 +75,7 @@ subsampling_factor: 1
num_encs: 1
###########################################
# training #
# Training #
###########################################
n_epoch: 240
accum_grad: 2
@ -82,7 +83,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-6
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000

@ -49,8 +49,9 @@ test_manifest: data/manifest.test
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
spm_model_prefix: ''
unit_type: 'char'
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
@ -69,7 +70,7 @@ subsampling_factor: 1
num_encs: 1
###########################################
# training #
# Training #
###########################################
n_epoch: 240
accum_grad: 2

@ -46,6 +46,7 @@ test_manifest: data/manifest.test
###########################################
unit_type: 'char'
vocab_filepath: data/lang_char/vocab.txt
spm_model_prefix: ''
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
@ -59,13 +60,13 @@ batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
###########################################
# training #
# Training #
###########################################
n_epoch: 240
accum_grad: 2
@ -73,7 +74,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-6
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000

@ -21,7 +21,7 @@ mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/alignment.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decode_batch_size ${batch_size}

@ -30,14 +30,14 @@ for type in attention ctc_greedy_search; do
# stream decoding only support batchsize=1
batch_size=1
else
batch_size=1
batch_size=64
fi
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
@ -57,7 +57,7 @@ for type in ctc_prefix_beam_search attention_rescoring; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \

@ -43,7 +43,7 @@ for type in attention_rescoring; do
python3 -u ${BIN_DIR}/test_wav.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \

@ -1,48 +1,47 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.5
max_input_len: 20.0 # second
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
spm_model_prefix: ''
augmentation_config: conf/preprocess.yaml
batch_size: 32
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 8000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
spm_model_prefix: ''
preprocess_config: conf/preprocess.yaml
batch_size: 32
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 8000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
############################################
# Network Architecture #
############################################
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
@ -62,9 +61,9 @@ model:
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
use_dynamic_left_chunk: false
# decoder related
decoder: transformer
decoder_conf:
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
@ -73,48 +72,27 @@ model:
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 240
accum_grad: 4
global_grad_clip: 5.0
optim: adam
optim_conf:
###########################################
# Training #
###########################################
n_epoch: 240
accum_grad: 4
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1e-6
scheduler: warmuplr
scheduler_conf:
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: true # simulate streaming inference. Defaults to False.

@ -1,47 +1,44 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.5
max_input_len: 20.0 # second
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.0
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
spm_model_prefix: ''
augmentation_config: conf/preprocess.yaml
batch_size: 32
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 8000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
spm_model_prefix: ''
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 64
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
# network architecture
model:
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
############################################
# Network Architecture #
############################################
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
@ -57,9 +54,9 @@ model:
pos_enc_layer_type: 'rel_pos'
selfattention_layer_type: 'rel_selfattn'
# decoder related
decoder: transformer
decoder_conf:
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
@ -68,50 +65,28 @@ model:
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 100 # 50 will be lowest
accum_grad: 4
global_grad_clip: 5.0
optim: adam
optim_conf:
###########################################
# Training #
###########################################
n_epoch: 100 # 50 will be lowest
accum_grad: 4
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-6
scheduler: warmuplr
scheduler_conf:
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,7 +1,7 @@
process:
# extract kaldi fbank from PCM
- type: fbank_kaldi
fs: 16000
fs: 8000
n_mels: 80
n_shift: 160
win_length: 400

@ -0,0 +1,11 @@
decode_batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: true # simulate streaming inference. Defaults to False.

@ -0,0 +1,13 @@
decode_batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,7 +1,7 @@
#! /usr/bin/env bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
ckpt_name=$(basename ${ckpt_prefxi})
@ -25,9 +26,10 @@ mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/alignment.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.batch_size ${batch_size}
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in ctc alignment!"

@ -1,7 +1,7 @@
#! /usr/bin/env bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -9,7 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
ckpt_name=$(basename ${ckpt_prefxi})
@ -30,10 +32,11 @@ for type in attention ctc_greedy_search; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
@ -49,10 +52,11 @@ for type in ctc_prefix_beam_search attention_rescoring; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"

@ -6,6 +6,7 @@ gpus=0,1,2,3
stage=0
stop_stage=100
conf_path=conf/conformer.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=20
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
@ -31,12 +32,12 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# ctc alignment of test data
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then

@ -1,68 +1,65 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev-clean
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 30.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev-clean
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 30.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 20
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 20.0
delta_delta: False
dither: 1.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
batch_size: 20
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 20.0
delta_delta: False
dither: 1.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 0
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 0
training:
n_epoch: 50
accum_grad: 1
lr: 1e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 100
checkpoint:
###########################################
# Training #
###########################################
n_epoch: 50
accum_grad: 1
lr: 1e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.9
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -1,70 +1,67 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev-clean
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 30.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev-clean
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 30.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 15
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 20.0
delta_delta: False
dither: 1.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
###########################################
# Dataloader #
###########################################
batch_size: 15
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 20.0
delta_delta: False
dither: 1.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
rnn_direction: forward
num_fc_layers: 2
fc_layers_size_list: 512, 256
use_gru: False
blank_id: 0
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
rnn_direction: forward
num_fc_layers: 2
fc_layers_size_list: 512, 256
use_gru: False
blank_id: 0
training:
n_epoch: 50
accum_grad: 4
lr: 1e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 100
checkpoint:
###########################################
# Training #
###########################################
n_epoch: 50
accum_grad: 4
lr: 1e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.9
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -0,0 +1,10 @@
decode_batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.9
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -0,0 +1,10 @@
decode_batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.9
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_en.sh
@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type audio_file"
if [ $# != 5 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type audio_file"
exit -1
fi
@ -9,9 +9,10 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
audio_file=$4
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
audio_file=$5
mkdir -p data
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/en/demo_002_en.wav -P data/
@ -33,6 +34,7 @@ fi
python3 -u ${BIN_DIR}/test_wav.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type} \

@ -6,6 +6,7 @@ gpus=0,1,2,3,4,5,6,7
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=30
model_type=offline
audio_file=data/demo_002_en.wav
@ -33,7 +34,7 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
@ -43,5 +44,5 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} || exit -1
fi

@ -57,7 +57,7 @@ vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
@ -71,7 +71,6 @@ batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
@ -85,10 +84,11 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50

@ -50,7 +50,7 @@ vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
@ -64,7 +64,6 @@ batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
@ -79,7 +78,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000

@ -55,7 +55,7 @@ vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
@ -69,7 +69,6 @@ batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
@ -84,7 +83,7 @@ global_grad_clip: 3.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000

@ -49,7 +49,7 @@ vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
@ -63,7 +63,6 @@ batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
@ -78,7 +77,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000

@ -21,7 +21,7 @@ mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/alignment.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decode_batch_size ${batch_size}

@ -53,7 +53,7 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
@ -78,7 +78,7 @@ for type in ctc_greedy_search; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
@ -99,7 +99,7 @@ for type in ctc_prefix_beam_search attention_rescoring; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \

@ -50,7 +50,7 @@ for type in attention_rescoring; do
python3 -u ${BIN_DIR}/test_wav.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \

@ -0,0 +1,11 @@
decode_batch_size: 1
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,11 +1,12 @@
# https://yaml.org/type/float.html
# network architecture
model:
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
############################################
# Network Architecture #
############################################
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
@ -16,9 +17,9 @@ model:
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
@ -27,45 +28,51 @@ model:
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
collator:
vocab_filepath: data/lang_char/train_960_unigram5000_units.txt
unit_type: spm
spm_model_prefix: data/lang_char/train_960_unigram5000
feat_dim: 83
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 30
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/train_960_unigram5000_units.txt
unit_type: spm
spm_model_prefix: data/lang_char/train_960_unigram5000
feat_dim: 83
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 30
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
preprocess_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
training:
n_epoch: 120
accum_grad: 2
log_interval: 100
checkpoint:
###########################################
# Training #
###########################################
n_epoch: 120
accum_grad: 2
log_interval: 1
checkpoint:
kbest_n: 50
latest_n: 5
@ -79,23 +86,5 @@ scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
decoding:
batch_size: 1
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path dict_path ckpt_path_prefix"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path dict_path ckpt_path_prefix"
exit -1
fi
@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
dict_path=$2
ckpt_prefix=$3
decode_config_path=$2
dict_path=$3
ckpt_prefix=$4
batch_size=1
output_dir=${ckpt_prefix}
@ -24,9 +25,10 @@ python3 -u ${BIN_DIR}/test.py \
--dict-path ${dict_path} \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result-file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.batch_size ${batch_size}
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in ctc alignment!"

@ -19,8 +19,9 @@ bpeprefix=data/lang_char/${train_set}_${bpemode}${nbpe}
bpemodel=${bpeprefix}.model
config_path=conf/transformer.yaml
decode_config_path=conf/decode/decode_base.yaml
dict=data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt
ckpt_prefix=
ckpt_prefix=exp/transformer/checkpoints/init
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
@ -79,11 +80,12 @@ for dmethd in attention ctc_greedy_search ctc_prefix_beam_search attention_resco
--ngpu ${ngpu} \
--dict-path ${dict} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--checkpoint_path ${ckpt_prefix} \
--result-file ${decode_dir}/data.JOB.json \
--opts decoding.decoding_method ${dmethd} \
--opts decoding.batch_size ${batch_size} \
--opts data.test_manifest ${feat_recog_dir}/split${nj}/JOB/manifest.${rtask}
--opts decode.decoding_method ${dmethd} \
--opts decode.decode_batch_size ${batch_size} \
--opts test_manifest ${feat_recog_dir}/split${nj}/JOB/manifest.${rtask}
score_sclite.sh --bpe ${nbpe} --bpemodel ${bpemodel} --wer false ${decode_dir} ${dict}

@ -9,12 +9,14 @@ gpus=0,1,2,3,4,5,6,7
stage=0
stop_stage=50
conf_path=conf/transformer.yaml
dict_path=lang_char/train_960_unigram5000_units.txt
decode_conf_path=conf/decode/decode_base.yaml
dict_path=data/lang_char/train_960_unigram5000_units.txt
avg_num=10
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
avg_ckpt=avg_${avg_num}
avg_ckpt=init
ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}')
echo "checkpoint name ${ckpt}"
@ -35,7 +37,7 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# attetion resocre decoder
./local/test.sh ${conf_path} ${dict_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
./local/test.sh ${conf_path} ${decode_conf_path} ${dict_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
@ -45,7 +47,7 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# ctc alignment of test data
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} ${dict_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} ${decode_conf_path} ${dict_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then

@ -1,67 +1,65 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 4333
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 4333
training:
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
###########################################
# Training #
###########################################
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 32
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 2.6
beta: 5.0
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 8

@ -0,0 +1,10 @@
decode_batch_size: 32
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 2.6
beta: 5.0
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 8

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_ch.sh
@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}

@ -5,6 +5,7 @@ source path.sh
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
model_type=offline
gpus=2
@ -23,6 +24,6 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
fi

@ -1,67 +1,64 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: .inf # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: .inf # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 28
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 28
training:
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
###########################################
# Training #
###########################################
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 32
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.4
beta: 0.35
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -0,0 +1,10 @@
decode_batch_size: 32
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.4
beta: 0.35
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_en.sh
@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}

@ -5,6 +5,7 @@ source path.sh
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
model_type=offline
gpus=0
@ -23,6 +24,6 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
fi

@ -1,67 +1,64 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 1000.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 1000.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 28
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 28
training:
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
###########################################
# Training #
###########################################
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 32
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -0,0 +1,10 @@
decode_batch_size: 32
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_en.sh
@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}

@ -5,6 +5,7 @@ source path.sh
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
model_type=offline
gpus=1
@ -23,5 +24,5 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
fi

@ -13,6 +13,7 @@
# limitations under the License.
"""Evaluation for DeepSpeech2 model."""
from src_deepspeech2x.test_model import DeepSpeech2Tester as Tester
from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.config import get_cfg_defaults
from paddlespeech.s2t.training.cli import default_argument_parser
@ -44,6 +45,10 @@ if __name__ == "__main__":
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()

@ -233,11 +233,11 @@ class DeepSpeech2Model(nn.Layer):
"""
model = cls(feat_size=dataloader.collate_fn.feature_size,
dict_size=len(dataloader.collate_fn.vocab_list),
num_conv_layers=config.model.num_conv_layers,
num_rnn_layers=config.model.num_rnn_layers,
rnn_size=config.model.rnn_layer_size,
use_gru=config.model.use_gru,
share_rnn_weights=config.model.share_rnn_weights)
num_conv_layers=config.num_conv_layers,
num_rnn_layers=config.num_rnn_layers,
rnn_size=config.rnn_layer_size,
use_gru=config.use_gru,
share_rnn_weights=config.share_rnn_weights)
infos = Checkpoint().load_parameters(
model, checkpoint_path=checkpoint_path)
logger.info(f"checkpoint info: {infos}")
@ -250,7 +250,7 @@ class DeepSpeech2Model(nn.Layer):
Parameters
config: yacs.config.CfgNode
config.model
config
Returns
-------
DeepSpeech2Model

@ -64,7 +64,7 @@ class DeepSpeech2Trainer(Trainer):
super().__init__(config, args)
def train_batch(self, batch_index, batch_data, msg):
train_conf = self.config.training
train_conf = self.config
start = time.time()
# forward
@ -98,7 +98,7 @@ class DeepSpeech2Trainer(Trainer):
iteration_time = time.time() - start
msg += "train time: {:>.3f}s, ".format(iteration_time)
msg += "batch size: {}, ".format(self.config.collator.batch_size)
msg += "batch size: {}, ".format(self.config.batch_size)
msg += "accum: {}, ".format(train_conf.accum_grad)
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_np.items())
@ -126,7 +126,7 @@ class DeepSpeech2Trainer(Trainer):
total_loss += float(loss) * num_utts
valid_losses['val_loss'].append(float(loss))
if (i + 1) % self.config.training.log_interval == 0:
if (i + 1) % self.config.log_interval == 0:
valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
valid_dump['val_history_loss'] = total_loss / num_seen_utts
@ -146,15 +146,15 @@ class DeepSpeech2Trainer(Trainer):
def setup_model(self):
config = self.config.clone()
config.defrost()
config.model.feat_size = self.train_loader.collate_fn.feature_size
#config.model.dict_size = self.train_loader.collate_fn.vocab_size
config.model.dict_size = len(self.train_loader.collate_fn.vocab_list)
config.feat_size = self.train_loader.collate_fn.feature_size
#config.dict_size = self.train_loader.collate_fn.vocab_size
config.dict_size = len(self.train_loader.collate_fn.vocab_list)
config.freeze()
if self.args.model_type == 'offline':
model = DeepSpeech2Model.from_config(config.model)
model = DeepSpeech2Model.from_config(config)
elif self.args.model_type == 'online':
model = DeepSpeech2ModelOnline.from_config(config.model)
model = DeepSpeech2ModelOnline.from_config(config)
else:
raise Exception("wrong model type")
if self.parallel:
@ -163,17 +163,13 @@ class DeepSpeech2Trainer(Trainer):
logger.info(f"{model}")
layer_tools.print_params(model, logger.info)
grad_clip = ClipGradByGlobalNormWithLog(
config.training.global_grad_clip)
grad_clip = ClipGradByGlobalNormWithLog(config.global_grad_clip)
lr_scheduler = paddle.optimizer.lr.ExponentialDecay(
learning_rate=config.training.lr,
gamma=config.training.lr_decay,
verbose=True)
learning_rate=config.lr, gamma=config.lr_decay, verbose=True)
optimizer = paddle.optimizer.Adam(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=paddle.regularizer.L2Decay(
config.training.weight_decay),
weight_decay=paddle.regularizer.L2Decay(config.weight_decay),
grad_clip=grad_clip)
self.model = model
@ -184,59 +180,59 @@ class DeepSpeech2Trainer(Trainer):
def setup_dataloader(self):
config = self.config.clone()
config.defrost()
config.collator.keep_transcription_text = False
config.keep_transcription_text = False
config.data.manifest = config.data.train_manifest
config.manifest = config.train_manifest
train_dataset = ManifestDataset.from_config(config)
config.data.manifest = config.data.dev_manifest
config.manifest = config.dev_manifest
dev_dataset = ManifestDataset.from_config(config)
config.data.manifest = config.data.test_manifest
config.manifest = config.test_manifest
test_dataset = ManifestDataset.from_config(config)
if self.parallel:
batch_sampler = SortagradDistributedBatchSampler(
train_dataset,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
num_replicas=None,
rank=None,
shuffle=True,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
else:
batch_sampler = SortagradBatchSampler(
train_dataset,
shuffle=True,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
collate_fn_train = SpeechCollator.from_config(config)
config.collator.augmentation_config = ""
config.augmentation_config = ""
collate_fn_dev = SpeechCollator.from_config(config)
config.collator.keep_transcription_text = True
config.collator.augmentation_config = ""
config.keep_transcription_text = True
config.augmentation_config = ""
collate_fn_test = SpeechCollator.from_config(config)
self.train_loader = DataLoader(
train_dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn_train,
num_workers=config.collator.num_workers)
num_workers=config.num_workers)
self.valid_loader = DataLoader(
dev_dataset,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
shuffle=False,
drop_last=False,
collate_fn=collate_fn_dev)
self.test_loader = DataLoader(
test_dataset,
batch_size=config.decoding.batch_size,
batch_size=config.decode.decode_batch_size,
shuffle=False,
drop_last=False,
collate_fn=collate_fn_test)
@ -274,7 +270,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def __init__(self, config, args):
self._text_featurizer = TextFeaturizer(
unit_type=config.collator.unit_type, vocab_filepath=None)
unit_type=config.unit_type, vocab=None)
super().__init__(config, args)
def ordid2token(self, texts, texts_len):
@ -293,7 +289,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
texts,
texts_len,
fout=None):
cfg = self.config.decoding
cfg = self.config.decode
errors_sum, len_refs, num_ins = 0.0, 0, 0
errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer
@ -399,31 +395,3 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
self.export()
except KeyboardInterrupt:
exit(-1)
def setup(self):
"""Setup the experiment.
"""
paddle.set_device('gpu' if self.args.ngpu > 0 else 'cpu')
self.setup_output_dir()
self.setup_checkpointer()
self.setup_dataloader()
self.setup_model()
self.iteration = 0
self.epoch = 0
def setup_output_dir(self):
"""Create a directory used for output.
"""
# output dir
if self.args.output:
output_dir = Path(self.args.output).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
else:
output_dir = Path(
self.args.checkpoint_path).expanduser().parent.parent
output_dir.mkdir(parents=True, exist_ok=True)
self.output_dir = output_dir

@ -1,48 +1,53 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train.tiny
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.05 # second
max_input_len: 30.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train.tiny
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.05 # second
max_input_len: 30.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
############################################
# Network Architecture #
############################################
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
@ -53,9 +58,9 @@ model:
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
@ -64,46 +69,28 @@ model:
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
# hybrid CTC/attention
model_conf:
asr_weight: 0.0
ctc_weight: 0.0
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 120
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
###########################################
# Training #
###########################################
n_epoch: 120
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1e-06
scheduler: warmuplr
scheduler_conf:
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 5
checkpoint:
log_interval: 5
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,48 +1,53 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.05 # second
max_input_len: 30.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.05 # second
max_input_len: 30.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
############################################
# Network Architecture #
############################################
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
@ -53,9 +58,9 @@ model:
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
@ -64,49 +69,32 @@ model:
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
# hybrid CTC/attention
model_conf:
asr_weight: 0.5
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 120
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
###########################################
# Training #
###########################################
n_epoch: 120
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 2.5
weight_decay: 1e-06
scheduler: noam
scheduler_conf:
weight_decay: 1.0e-06
scheduler: noam
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 50
checkpoint:
log_interval: 50
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
alpha: 2.5
beta: 0.3
beam_size: 10
word_reward: 0.7
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -0,0 +1,11 @@
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
beam_size: 10
word_reward: 0.7
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,7 +1,7 @@
#! /usr/bin/env bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
for type in fullsentence; do
echo "decoding ${type}"
@ -17,10 +18,11 @@ for type in fullsentence; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"

@ -6,6 +6,7 @@ gpus=0,1,2,3
stage=0
stop_stage=50
conf_path=conf/transformer_mtl_noam.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=5
data_path=./TED_EnZh # path to unzipped data
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
@ -32,7 +33,7 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 51 ] && [ ${stop_stage} -ge 51 ]; then

@ -1,48 +1,53 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train.tiny
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 5.0 # frame
max_input_len: 3000.0 # frame
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train.tiny
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 5.0 # frame
max_input_len: 3000.0 # frame
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 83
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 83
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: None
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
############################################
# Network Architecture #
############################################
cmvn_file: None
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
@ -53,9 +58,9 @@ model:
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
@ -64,47 +69,29 @@ model:
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
# hybrid CTC/attention
model_conf:
asr_weight: 0.0
ctc_weight: 0.0
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 20
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
###########################################
# Training #
###########################################
n_epoch: 20
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1e-06
scheduler: warmuplr
scheduler_conf:
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 5
checkpoint:
log_interval: 5
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
alpha: 2.5
beta: 0.3
beam_size: 10
word_reward: 0.7
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,48 +1,53 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 5.0 # frame
max_input_len: 3000.0 # frame
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 5.0 # frame
max_input_len: 3000.0 # frame
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
collator:
vocab_filepath: data/lang_char/ted_en_zh_bpe8000.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/ted_en_zh_bpe8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 83
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/ted_en_zh_bpe8000.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/ted_en_zh_bpe8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 83
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: None
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
############################################
# Network Architecture #
############################################
cmvn_file: None
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
@ -53,9 +58,9 @@ model:
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
@ -64,47 +69,29 @@ model:
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
# hybrid CTC/attention
model_conf:
asr_weight: 0.5
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 20
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
###########################################
# Training #
###########################################
n_epoch: 20
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 2.5
weight_decay: 1e-06
scheduler: noam
scheduler_conf:
weight_decay: 1.0e-06
scheduler: noam
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 5
checkpoint:
log_interval: 5
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
alpha: 2.5
beta: 0.3
beam_size: 10
word_reward: 0.7
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -0,0 +1,12 @@
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
beam_size: 10
word_reward: 0.7
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,7 +1,7 @@
#! /usr/bin/env bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
for type in fullsentence; do
echo "decoding ${type}"
@ -17,10 +18,11 @@ for type in fullsentence; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"

@ -7,6 +7,7 @@ gpus=0,1,2,3
stage=1
stop_stage=4
conf_path=conf/transformer_mtl_noam.yaml
decode_conf_path=conf/tuning/decode.yaml
ckpt_path= # paddle.98 # (finetune from FAT-ST pretrained model)
avg_num=5
data_path=./TED_EnZh # path to unzipped data
@ -38,5 +39,5 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_pat} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi

@ -1,47 +1,45 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0 # second
max_input_len: 10.0 # second
min_output_len: 0.0 # tokens
max_output_len: 150.0 # tokens
min_output_input_ratio: 0.005
max_output_input_ratio: 1000.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: "word"
mean_std_filepath: ""
augmentation_config: conf/preprocess.yaml
batch_size: 64
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
spm_model_prefix: ''
unit_type: "word"
mean_std_filepath: ""
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 64
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
# network architecture
model:
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
############################################
# Network Architecture #
############################################
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 128 # dimension of attention
attention_heads: 4
linear_units: 1024 # the number of units of position-wise feed forward
@ -52,9 +50,9 @@ model:
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 1024
num_blocks: 6
@ -63,48 +61,29 @@ model:
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
# hybrid CTC/attention
model_conf:
ctc_weight: 0.5
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 50
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
###########################################
# Training #
###########################################
n_epoch: 50
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1e-06
scheduler: warmuplr
scheduler_conf:
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 1200
lr_decay: 1.0
log_interval: 10
checkpoint:
log_interval: 10
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -0,0 +1,11 @@
decode_batch_size: 64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
batch_size=1
output_dir=${ckpt_prefix}
@ -20,9 +21,10 @@ mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/alignment.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.batch_size ${batch_size}
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in ctc alignment!"

@ -7,8 +7,8 @@ stop_stage=50
. ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -17,7 +17,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
@ -43,10 +44,11 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
@ -63,10 +65,11 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
@ -82,10 +85,11 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"

@ -7,6 +7,7 @@ gpus=0,1,2,3
stage=0
stop_stage=50
conf_path=conf/transformer.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=10
TIMIT_path=/path/to/TIMIT
@ -34,15 +35,15 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# ctc alignment of test data
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
# if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# # export ckpt avg_n
# CUDA_VISIBLE_DEVICES= ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
# fi
if [ ${stage} -le 51 ] && [ ${stop_stage} -ge 51 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES= ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
fi

@ -1,70 +1,67 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.0
max_input_len: 30.0
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.0
max_input_len: 30.0
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
batch_size: 4
###########################################
# Dataloader #
###########################################
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
batch_size: 4
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 0
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 0
training:
n_epoch: 5
accum_grad: 1
lr: 1e-5
lr_decay: 0.8
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 1
checkpoint:
###########################################
# Training #
###########################################
n_epoch: 5
accum_grad: 1
lr: 1e-5
lr_decay: 0.8
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 1
checkpoint:
kbest_n: 3
latest_n: 2
decoding:
batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -1,72 +1,68 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.0
max_input_len: 30.0
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.0
max_input_len: 30.0
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
batch_size: 4
###########################################
# Dataloader #
###########################################
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
batch_size: 4
model:
num_conv_layers: 2
num_rnn_layers: 4
rnn_layer_size: 2048
rnn_direction: forward
num_fc_layers: 2
fc_layers_size_list: 512, 256
use_gru: True
blank_id: 0
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 4
rnn_layer_size: 2048
rnn_direction: forward
num_fc_layers: 2
fc_layers_size_list: 512, 256
use_gru: True
blank_id: 0
training:
n_epoch: 5
accum_grad: 1
lr: 1e-5
lr_decay: 1.0
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 1
checkpoint:
###########################################
# Training #
###########################################
n_epoch: 5
accum_grad: 1
lr: 1e-5
lr_decay: 1.0
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 1
checkpoint:
kbest_n: 3
latest_n: 2
decoding:
batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -0,0 +1,10 @@
decode_batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -0,0 +1,10 @@
decode_batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_en.sh
@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}

@ -6,6 +6,7 @@ gpus=0
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
model_type=offline
@ -32,7 +33,7 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then

@ -1,48 +1,11 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.5 # second
max_input_len: 30.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
augmentation_config: conf/preprocess.yaml
batch_size: 4
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
############################################
# Network Architecture #
############################################
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
@ -62,9 +25,9 @@ model:
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
use_dynamic_left_chunk: false
# decoder related
decoder: transformer
decoder_conf:
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
@ -73,48 +36,63 @@ model:
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 5
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
###########################################
# Dataloader #
###########################################
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 4
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
###########################################
# Training #
###########################################
n_epoch: 5
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1e-06
scheduler: warmuplr
scheduler_conf:
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
checkpoint:
log_interval: 1
checkpoint:
kbest_n: 10
latest_n: 1
decoding:
batch_size: 64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,48 +1,11 @@
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.5 # second
max_input_len: 20.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
augmentation_config: conf/preprocess.yaml
batch_size: 4
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
############################################
# Network Architecture #
############################################
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
@ -55,9 +18,9 @@ model:
use_dynamic_chunk: true
use_dynamic_left_chunk: false
# decoder related
decoder: transformer
decoder_conf:
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
@ -66,48 +29,63 @@ model:
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 5
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
# https://yaml.org/type/float.html
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
###########################################
# Dataloader #
###########################################
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 4
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
###########################################
# Training #
###########################################
n_epoch: 5
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-06
scheduler: warmuplr
scheduler_conf:
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
checkpoint:
log_interval: 1
checkpoint:
kbest_n: 10
latest_n: 1
decoding:
batch_size: 64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,46 +1,4 @@
# https://yaml.org/type/float.html
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.5 # second
max_input_len: 20.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
###########################################
# Dataloader #
###########################################
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
augmentation_config: conf/preprocess.yaml
batch_size: 4
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
############################################
# Network Architecture #
############################################
@ -83,7 +41,41 @@ model_conf:
###########################################
# training #
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
###########################################
# Dataloader #
###########################################
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 4
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
###########################################
# Training #
###########################################
n_epoch: 5
accum_grad: 4
@ -91,7 +83,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000

@ -1,44 +1,4 @@
# https://yaml.org/type/float.html
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.5 # second
max_input_len: 20.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
###########################################
# Dataloader #
###########################################
mean_std_filepath: data/mean_std.json
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
augmentation_config: conf/preprocess.yaml
batch_size: 4
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
############################################
# Network Architecture #
############################################
@ -74,9 +34,41 @@ model_conf:
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
###########################################
# Dataloader #
###########################################
mean_std_filepath: data/mean_std.json
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 4
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
###########################################
# training #
# Training #
###########################################
n_epoch: 5
accum_grad: 1
@ -84,7 +76,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000

@ -0,0 +1,11 @@
decode_batch_size: 8 #64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -0,0 +1,11 @@
decode_batch_size: 8 #64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
batch_size=1
output_dir=${ckpt_prefix}
@ -20,9 +21,10 @@ mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/alignment.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.batch_size ${batch_size}
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in ctc alignment!"

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
@ -33,10 +34,11 @@ for type in attention ctc_greedy_search; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
@ -50,10 +52,11 @@ for type in ctc_prefix_beam_search attention_rescoring; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"

@ -6,6 +6,7 @@ gpus=0
stage=0
stop_stage=50
conf_path=conf/transformer.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
@ -31,12 +32,12 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# ctc alignment of test data
CUDA_VISIBLE_DEVICES=${gpus} ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/align.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 51 ] && [ ${stop_stage} -ge 51 ]; then

@ -1,8 +1,11 @@
# network architecture
model:
# encoder related
encoder: conformer
encoder_conf:
############################################
# Network Architecture #
############################################
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 512 # dimension of attention
attention_heads: 8
linear_units: 2048 # the number of units of position-wise feed forward
@ -19,9 +22,9 @@ model:
pos_enc_layer_type: rel_pos
selfattention_layer_type: rel_selfattn
# decoder related
decoder: transformer
decoder_conf:
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 8
linear_units: 2048
num_blocks: 6
@ -30,82 +33,60 @@ model:
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.1 # second
max_input_len: 12.0 # second
min_output_len: 1.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
spm_model_prefix: ''
augmentation_config: conf/preprocess.yaml
batch_size: 64
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
preprocess_config: conf/preprocess.yaml
spm_model_prefix: ''
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 64
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
training:
n_epoch: 240
accum_grad: 16
global_grad_clip: 5.0
log_interval: 100
checkpoint:
###########################################
# Training #
###########################################
n_epoch: 240
accum_grad: 16
global_grad_clip: 5.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
optim: adam
optim_conf:
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1e-6
scheduler: warmuplr
scheduler_conf:
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 5000
lr_decay: 1.0
decoding:
batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -0,0 +1,11 @@
decode_batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
@ -36,10 +37,11 @@ for type in attention ctc_greedy_search; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
@ -55,10 +57,11 @@ for type in ctc_prefix_beam_search attention_rescoring; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"

@ -1,7 +1,7 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix audio_file"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix audio_file"
exit -1
fi
@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
audio_file=$3
decode_config_path=$2
ckpt_prefix=$3
audio_file=$4
mkdir -p data
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/zh/demo_01_03.wav -P data/
@ -43,10 +44,11 @@ for type in attention_rescoring; do
python3 -u ${BIN_DIR}/test_wav.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size} \
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size} \
--audio_file ${audio_file}
if [ $? -ne 0 ]; then

@ -7,7 +7,7 @@ gpus=0,1,2,3,4,5,6,7
stage=0
stop_stage=100
conf_path=conf/conformer.yaml
decode_conf_path=conf/tuning/decode.yaml
average_checkpoint=true
avg_num=10
@ -36,12 +36,12 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# ctc alignment of test data
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
@ -51,5 +51,5 @@ fi
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${audio_file} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${audio_file} || exit -1
fi

@ -80,13 +80,13 @@ def inference(config, args):
def start_server(config, args):
"""Start the ASR server"""
config.defrost()
config.data.manifest = config.data.test_manifest
config.manifest = config.test_manifest
dataset = ManifestDataset.from_config(config)
config.collator.augmentation_config = ""
config.collator.keep_transcription_text = True
config.collator.batch_size = 1
config.collator.num_workers = 0
config.augmentation_config = ""
config.keep_transcription_text = True
config.batch_size = 1
config.num_workers = 0
collate_fn = SpeechCollator.from_config(config)
test_loader = DataLoader(dataset, collate_fn=collate_fn, num_workers=0)
@ -105,14 +105,14 @@ def start_server(config, args):
paddle.to_tensor(audio),
paddle.to_tensor(audio_len),
vocab_list=test_loader.collate_fn.vocab_list,
decoding_method=config.decoding.decoding_method,
lang_model_path=config.decoding.lang_model_path,
beam_alpha=config.decoding.alpha,
beam_beta=config.decoding.beta,
beam_size=config.decoding.beam_size,
cutoff_prob=config.decoding.cutoff_prob,
cutoff_top_n=config.decoding.cutoff_top_n,
num_processes=config.decoding.num_proc_bsearch)
decoding_method=config.decode.decoding_method,
lang_model_path=config.decode.lang_model_path,
beam_alpha=config.decode.alpha,
beam_beta=config.decode.beta,
beam_size=config.decode.beam_size,
cutoff_prob=config.decode.cutoff_prob,
cutoff_top_n=config.decode.cutoff_top_n,
num_processes=config.decode.num_proc_bsearch)
return result_transcript[0]
# warming up with utterrances sampled from Librispeech
@ -179,12 +179,16 @@ if __name__ == "__main__":
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
args.warmup_manifest = config.data.test_manifest
args.warmup_manifest = config.test_manifest
print_arguments(args, globals())
if args.dump_config:

@ -33,13 +33,13 @@ from paddlespeech.s2t.utils.utility import print_arguments
def start_server(config, args):
"""Start the ASR server"""
config.defrost()
config.data.manifest = config.data.test_manifest
config.manifest = config.test_manifest
dataset = ManifestDataset.from_config(config)
config.collator.augmentation_config = ""
config.collator.keep_transcription_text = True
config.collator.batch_size = 1
config.collator.num_workers = 0
config.augmentation_config = ""
config.keep_transcription_text = True
config.batch_size = 1
config.num_workers = 0
collate_fn = SpeechCollator.from_config(config)
test_loader = DataLoader(dataset, collate_fn=collate_fn, num_workers=0)
@ -62,14 +62,14 @@ def start_server(config, args):
paddle.to_tensor(audio),
paddle.to_tensor(audio_len),
vocab_list=test_loader.collate_fn.vocab_list,
decoding_method=config.decoding.decoding_method,
lang_model_path=config.decoding.lang_model_path,
beam_alpha=config.decoding.alpha,
beam_beta=config.decoding.beta,
beam_size=config.decoding.beam_size,
cutoff_prob=config.decoding.cutoff_prob,
cutoff_top_n=config.decoding.cutoff_top_n,
num_processes=config.decoding.num_proc_bsearch)
decoding_method=config.decode.decoding_method,
lang_model_path=config.decode.lang_model_path,
beam_alpha=config.decode.alpha,
beam_beta=config.decode.beta,
beam_size=config.decode.beam_size,
cutoff_prob=config.decode.cutoff_prob,
cutoff_top_n=config.decode.cutoff_top_n,
num_processes=config.decode.num_proc_bsearch)
return result_transcript[0]
# warming up with utterrances sampled from Librispeech
@ -114,12 +114,16 @@ if __name__ == "__main__":
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
args.warmup_manifest = config.data.test_manifest
args.warmup_manifest = config.test_manifest
print_arguments(args, globals())
if args.dump_config:

@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation for DeepSpeech2 model."""
from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.config import get_cfg_defaults
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
@ -44,6 +46,10 @@ if __name__ == "__main__":
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()

@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation for DeepSpeech2 model."""
from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.config import get_cfg_defaults
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2ExportTester as ExportTester
from paddlespeech.s2t.training.cli import default_argument_parser
@ -49,6 +51,10 @@ if __name__ == "__main__":
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()

@ -18,6 +18,7 @@ from pathlib import Path
import paddle
import soundfile
from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.config import get_cfg_defaults
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
@ -41,7 +42,7 @@ class DeepSpeech2Tester_hub():
self.audio_file = args.audio_file
self.collate_fn_test = SpeechCollator.from_config(config)
self._text_featurizer = TextFeaturizer(
unit_type=config.collator.unit_type, vocab=None)
unit_type=config.unit_type, vocab=None)
def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
result_transcripts = self.model.decode(
@ -74,7 +75,7 @@ class DeepSpeech2Tester_hub():
audio = paddle.unsqueeze(audio, axis=0)
vocab_list = collate_fn_test.vocab_list
result_transcripts = self.compute_result_transcripts(
audio, audio_len, vocab_list, cfg.decoding)
audio, audio_len, vocab_list, cfg.decode)
logger.info("result_transcripts: " + result_transcripts[0])
def run_test(self):
@ -110,13 +111,13 @@ class DeepSpeech2Tester_hub():
def setup_model(self):
config = self.config.clone()
with UpdateConfig(config):
config.model.input_dim = self.collate_fn_test.feature_size
config.model.output_dim = self.collate_fn_test.vocab_size
config.input_dim = self.collate_fn_test.feature_size
config.output_dim = self.collate_fn_test.vocab_size
if self.args.model_type == 'offline':
model = DeepSpeech2Model.from_config(config.model)
model = DeepSpeech2Model.from_config(config)
elif self.args.model_type == 'online':
model = DeepSpeech2ModelOnline.from_config(config.model)
model = DeepSpeech2ModelOnline.from_config(config)
else:
raise Exception("wrong model type")
@ -134,8 +135,8 @@ class DeepSpeech2Tester_hub():
self.checkpoint_dir = checkpoint_dir
self.checkpoint = Checkpoint(
kbest_n=self.config.training.checkpoint.kbest_n,
latest_n=self.config.training.checkpoint.latest_n)
kbest_n=self.config.checkpoint.kbest_n,
latest_n=self.config.checkpoint.latest_n)
def resume(self):
"""Resume from the checkpoint at checkpoints in the output
@ -190,6 +191,10 @@ if __name__ == "__main__":
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()

@ -23,17 +23,6 @@ from paddlespeech.s2t.models.ds2_online import DeepSpeech2ModelOnline
def get_cfg_defaults(model_type='offline'):
_C = CfgNode()
_C.data = ManifestDataset.params()
_C.collator = SpeechCollator.params()
_C.training = DeepSpeech2Trainer.params()
_C.decoding = DeepSpeech2Tester.params()
if model_type == 'offline':
_C.model = DeepSpeech2Model.params()
else:
_C.model = DeepSpeech2ModelOnline.params()
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
config = _C.clone()
config.set_new_allowed(True)
return config

@ -69,8 +69,8 @@ class DeepSpeech2Trainer(Trainer):
super().__init__(config, args)
def train_batch(self, batch_index, batch_data, msg):
batch_size = self.config.collator.batch_size
accum_grad = self.config.training.accum_grad
batch_size = self.config.batch_size
accum_grad = self.config.accum_grad
start = time.time()
@ -133,7 +133,7 @@ class DeepSpeech2Trainer(Trainer):
total_loss += float(loss) * num_utts
valid_losses['val_loss'].append(float(loss))
if (i + 1) % self.config.training.log_interval == 0:
if (i + 1) % self.config.log_interval == 0:
valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
valid_dump['val_history_loss'] = total_loss / num_seen_utts
@ -154,16 +154,16 @@ class DeepSpeech2Trainer(Trainer):
config = self.config.clone()
with UpdateConfig(config):
if self.train:
config.model.input_dim = self.train_loader.collate_fn.feature_size
config.model.output_dim = self.train_loader.collate_fn.vocab_size
config.input_dim = self.train_loader.collate_fn.feature_size
config.output_dim = self.train_loader.collate_fn.vocab_size
else:
config.model.input_dim = self.test_loader.collate_fn.feature_size
config.model.output_dim = self.test_loader.collate_fn.vocab_size
config.input_dim = self.test_loader.collate_fn.feature_size
config.output_dim = self.test_loader.collate_fn.vocab_size
if self.args.model_type == 'offline':
model = DeepSpeech2Model.from_config(config.model)
model = DeepSpeech2Model.from_config(config)
elif self.args.model_type == 'online':
model = DeepSpeech2ModelOnline.from_config(config.model)
model = DeepSpeech2ModelOnline.from_config(config)
else:
raise Exception("wrong model type")
if self.parallel:
@ -177,17 +177,13 @@ class DeepSpeech2Trainer(Trainer):
if not self.train:
return
grad_clip = ClipGradByGlobalNormWithLog(
config.training.global_grad_clip)
grad_clip = ClipGradByGlobalNormWithLog(config.global_grad_clip)
lr_scheduler = paddle.optimizer.lr.ExponentialDecay(
learning_rate=config.training.lr,
gamma=config.training.lr_decay,
verbose=True)
learning_rate=config.lr, gamma=config.lr_decay, verbose=True)
optimizer = paddle.optimizer.Adam(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=paddle.regularizer.L2Decay(
config.training.weight_decay),
weight_decay=paddle.regularizer.L2Decay(config.weight_decay),
grad_clip=grad_clip)
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
@ -198,66 +194,67 @@ class DeepSpeech2Trainer(Trainer):
config.defrost()
if self.train:
# train
config.data.manifest = config.data.train_manifest
config.manifest = config.train_manifest
train_dataset = ManifestDataset.from_config(config)
if self.parallel:
batch_sampler = SortagradDistributedBatchSampler(
train_dataset,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
num_replicas=None,
rank=None,
shuffle=True,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
else:
batch_sampler = SortagradBatchSampler(
train_dataset,
shuffle=True,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
config.collator.keep_transcription_text = False
config.keep_transcription_text = False
collate_fn_train = SpeechCollator.from_config(config)
self.train_loader = DataLoader(
train_dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn_train,
num_workers=config.collator.num_workers)
num_workers=config.num_workers)
# dev
config.data.manifest = config.data.dev_manifest
config.manifest = config.dev_manifest
dev_dataset = ManifestDataset.from_config(config)
config.collator.augmentation_config = ""
config.collator.keep_transcription_text = False
config.augmentation_config = ""
config.keep_transcription_text = False
collate_fn_dev = SpeechCollator.from_config(config)
self.valid_loader = DataLoader(
dev_dataset,
batch_size=int(config.collator.batch_size),
batch_size=int(config.batch_size),
shuffle=False,
drop_last=False,
collate_fn=collate_fn_dev,
num_workers=config.collator.num_workers)
num_workers=config.num_workers)
logger.info("Setup train/valid Dataloader!")
else:
# test
config.data.manifest = config.data.test_manifest
config.manifest = config.test_manifest
test_dataset = ManifestDataset.from_config(config)
config.collator.augmentation_config = ""
config.collator.keep_transcription_text = True
config.augmentation_config = ""
config.keep_transcription_text = True
collate_fn_test = SpeechCollator.from_config(config)
decode_batch_size = config.get('decode', dict()).get(
'decode_batch_size', 1)
self.test_loader = DataLoader(
test_dataset,
batch_size=config.decoding.batch_size,
batch_size=decode_batch_size,
shuffle=False,
drop_last=False,
collate_fn=collate_fn_test,
num_workers=config.collator.num_workers)
num_workers=config.num_workers)
logger.info("Setup test Dataloader!")
@ -286,7 +283,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def __init__(self, config, args):
super().__init__(config, args)
self._text_featurizer = TextFeaturizer(
unit_type=config.collator.unit_type, vocab=None)
unit_type=config.unit_type, vocab=None)
def ordid2token(self, texts, texts_len):
""" ord() id to chr() chr """
@ -304,17 +301,17 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
texts,
texts_len,
fout=None):
cfg = self.config.decoding
decode_cfg = self.config.decode
errors_sum, len_refs, num_ins = 0.0, 0, 0
errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer
errors_func = error_rate.char_errors if decode_cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if decode_cfg.error_rate_type == 'cer' else error_rate.wer
vocab_list = self.test_loader.collate_fn.vocab_list
target_transcripts = self.ordid2token(texts, texts_len)
result_transcripts = self.compute_result_transcripts(audio, audio_len,
vocab_list, cfg)
result_transcripts = self.compute_result_transcripts(
audio, audio_len, vocab_list, decode_cfg)
for utt, target, result in zip(utts, target_transcripts,
result_transcripts):
@ -327,29 +324,31 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
logger.info(f"Utt: {utt}")
logger.info(f"Ref: {target}")
logger.info(f"Hyp: {result}")
logger.info("Current error rate [%s] = %f" %
(cfg.error_rate_type, error_rate_func(target, result)))
logger.info(
"Current error rate [%s] = %f" %
(decode_cfg.error_rate_type, error_rate_func(target, result)))
return dict(
errors_sum=errors_sum,
len_refs=len_refs,
num_ins=num_ins,
error_rate=errors_sum / len_refs,
error_rate_type=cfg.error_rate_type)
error_rate_type=decode_cfg.error_rate_type)
def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
def compute_result_transcripts(self, audio, audio_len, vocab_list,
decode_cfg):
result_transcripts = self.model.decode(
audio,
audio_len,
vocab_list,
decoding_method=cfg.decoding_method,
lang_model_path=cfg.lang_model_path,
beam_alpha=cfg.alpha,
beam_beta=cfg.beta,
beam_size=cfg.beam_size,
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch)
decoding_method=decode_cfg.decoding_method,
lang_model_path=decode_cfg.lang_model_path,
beam_alpha=decode_cfg.alpha,
beam_beta=decode_cfg.beta,
beam_size=decode_cfg.beam_size,
cutoff_prob=decode_cfg.cutoff_prob,
cutoff_top_n=decode_cfg.cutoff_top_n,
num_processes=decode_cfg.num_proc_bsearch)
return result_transcripts
@ -358,7 +357,6 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def test(self):
logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")
self.model.eval()
cfg = self.config
error_rate_type = None
errors_sum, len_refs, num_ins = 0.0, 0, 0
with jsonlines.open(self.args.result_file, 'w') as fout:
@ -412,11 +410,10 @@ class DeepSpeech2ExportTester(DeepSpeech2Tester):
if self.args.enable_auto_log is True:
from paddlespeech.s2t.utils.log import Autolog
self.autolog = Autolog(
batch_size=self.config.decoding.batch_size,
batch_size=self.config.decode.decode_batch_size,
model_name="deepspeech2",
model_precision="fp32").getlog()
self.model.eval()
cfg = self.config
error_rate_type = None
errors_sum, len_refs, num_ins = 0.0, 0, 0
with jsonlines.open(self.args.result_file, 'w') as fout:
@ -441,7 +438,8 @@ class DeepSpeech2ExportTester(DeepSpeech2Tester):
if self.args.enable_auto_log is True:
self.autolog.report()
def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
def compute_result_transcripts(self, audio, audio_len, vocab_list,
decode_cfg):
if self.args.model_type == "online":
output_probs, output_lens = self.static_forward_online(audio,
audio_len)
@ -454,13 +452,15 @@ class DeepSpeech2ExportTester(DeepSpeech2Tester):
self.predictor.clear_intermediate_tensor()
self.predictor.try_shrink_memory()
self.model.decoder.init_decode(cfg.alpha, cfg.beta, cfg.lang_model_path,
vocab_list, cfg.decoding_method)
self.model.decoder.init_decode(decode_cfg.alpha, decode_cfg.beta,
decode_cfg.lang_model_path, vocab_list,
decode_cfg.decoding_method)
result_transcripts = self.model.decoder.decode_probs(
output_probs, output_lens, vocab_list, cfg.decoding_method,
cfg.lang_model_path, cfg.alpha, cfg.beta, cfg.beam_size,
cfg.cutoff_prob, cfg.cutoff_top_n, cfg.num_proc_bsearch)
output_probs, output_lens, vocab_list, decode_cfg.decoding_method,
decode_cfg.lang_model_path, decode_cfg.alpha, decode_cfg.beta,
decode_cfg.beam_size, decode_cfg.cutoff_prob,
decode_cfg.cutoff_top_n, decode_cfg.num_proc_bsearch)
#replace the <space> with ' '
result_transcripts = [
self._text_featurizer.detokenize(sentence)
@ -531,12 +531,10 @@ class DeepSpeech2ExportTester(DeepSpeech2Tester):
num_chunk = int(num_chunk)
chunk_state_h_box = np.zeros(
(self.config.model.num_rnn_layers, 1,
self.config.model.rnn_layer_size),
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=x.dtype)
chunk_state_c_box = np.zeros(
(self.config.model.num_rnn_layers, 1,
self.config.model.rnn_layer_size),
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=x.dtype)
input_names = self.predictor.get_input_names()

@ -43,9 +43,9 @@ if __name__ == "__main__":
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.decode_config:
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_config)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save