parent
82378e5519
commit
c463b35fa8
@ -0,0 +1,66 @@
|
||||
#!/bin/bash
|
||||
|
||||
stage=1
|
||||
stop_stage=100
|
||||
|
||||
config_path=$1
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
# extract features
|
||||
echo "Extract features ..."
|
||||
python3 ${BIN_DIR}/preprocess.py \
|
||||
--dataset=opencpop \
|
||||
--rootdir=~/datasets/SVS/Opencpop/segments \
|
||||
--dumpdir=dump \
|
||||
--label-file=~/datasets/SVS/Opencpop/segments/transcriptions.txt \
|
||||
--config=${config_path} \
|
||||
--num-cpu=20 \
|
||||
--cut-sil=True
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
# get features' stats(mean and std)
|
||||
echo "Get features' stats ..."
|
||||
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
|
||||
--metadata=dump/train/raw/metadata.jsonl \
|
||||
--field-name="speech"
|
||||
|
||||
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
|
||||
--metadata=dump/train/raw/metadata.jsonl \
|
||||
--field-name="pitch"
|
||||
|
||||
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
|
||||
--metadata=dump/train/raw/metadata.jsonl \
|
||||
--field-name="energy"
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
# normalize and covert phone/speaker to id, dev and test should use train's stats
|
||||
echo "Normalize ..."
|
||||
python3 ${BIN_DIR}/normalize.py \
|
||||
--metadata=dump/train/raw/metadata.jsonl \
|
||||
--dumpdir=dump/train/norm \
|
||||
--speech-stats=dump/train/speech_stats.npy \
|
||||
--pitch-stats=dump/train/pitch_stats.npy \
|
||||
--energy-stats=dump/train/energy_stats.npy \
|
||||
--phones-dict=dump/phone_id_map.txt \
|
||||
--speaker-dict=dump/speaker_id_map.txt
|
||||
|
||||
python3 ${BIN_DIR}/normalize.py \
|
||||
--metadata=dump/dev/raw/metadata.jsonl \
|
||||
--dumpdir=dump/dev/norm \
|
||||
--speech-stats=dump/train/speech_stats.npy \
|
||||
--pitch-stats=dump/train/pitch_stats.npy \
|
||||
--energy-stats=dump/train/energy_stats.npy \
|
||||
--phones-dict=dump/phone_id_map.txt \
|
||||
--speaker-dict=dump/speaker_id_map.txt
|
||||
|
||||
python3 ${BIN_DIR}/normalize.py \
|
||||
--metadata=dump/test/raw/metadata.jsonl \
|
||||
--dumpdir=dump/test/norm \
|
||||
--speech-stats=dump/train/speech_stats.npy \
|
||||
--pitch-stats=dump/train/pitch_stats.npy \
|
||||
--energy-stats=dump/train/energy_stats.npy \
|
||||
--phones-dict=dump/phone_id_map.txt \
|
||||
--speaker-dict=dump/speaker_id_map.txt
|
||||
fi
|
@ -0,0 +1,100 @@
|
||||
#!/bin/bash
|
||||
|
||||
config_path=$1
|
||||
train_output_path=$2
|
||||
ckpt_name=$3
|
||||
stage=0
|
||||
stop_stage=0
|
||||
|
||||
# pwgan
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
FLAGS_allocator_strategy=naive_best_fit \
|
||||
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
|
||||
python3 ${BIN_DIR}/../synthesize.py \
|
||||
--am=diffsinger_opencpop \
|
||||
--am_config=${config_path} \
|
||||
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
|
||||
--am_stat=dump/train/speech_stats.npy \
|
||||
--voc=pwgan_opencpop \
|
||||
--voc_config=pwgan_opencpop/default.yaml \
|
||||
--voc_ckpt=pwgan_opencpop/snapshot_iter_100000.pdz \
|
||||
--voc_stat=pwgan_opencpop/feats_stats.npy \
|
||||
--test_metadata=dump/test/norm/metadata.jsonl \
|
||||
--output_dir=${train_output_path}/test \
|
||||
--phones_dict=dump/phone_id_map.txt
|
||||
fi
|
||||
|
||||
# for more GAN Vocoders
|
||||
# multi band melgan
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
FLAGS_allocator_strategy=naive_best_fit \
|
||||
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
|
||||
python3 ${BIN_DIR}/../synthesize.py \
|
||||
--am=fastspeech2_csmsc \
|
||||
--am_config=${config_path} \
|
||||
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
|
||||
--am_stat=dump/train/speech_stats.npy \
|
||||
--voc=mb_melgan_csmsc \
|
||||
--voc_config=mb_melgan_csmsc_ckpt_0.1.1/default.yaml \
|
||||
--voc_ckpt=mb_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1000000.pdz\
|
||||
--voc_stat=mb_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
|
||||
--test_metadata=dump/test/norm/metadata.jsonl \
|
||||
--output_dir=${train_output_path}/test \
|
||||
--phones_dict=dump/phone_id_map.txt
|
||||
fi
|
||||
|
||||
# style melgan
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
FLAGS_allocator_strategy=naive_best_fit \
|
||||
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
|
||||
python3 ${BIN_DIR}/../synthesize.py \
|
||||
--am=fastspeech2_csmsc \
|
||||
--am_config=${config_path} \
|
||||
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
|
||||
--am_stat=dump/train/speech_stats.npy \
|
||||
--voc=style_melgan_csmsc \
|
||||
--voc_config=style_melgan_csmsc_ckpt_0.1.1/default.yaml \
|
||||
--voc_ckpt=style_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1500000.pdz \
|
||||
--voc_stat=style_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
|
||||
--test_metadata=dump/test/norm/metadata.jsonl \
|
||||
--output_dir=${train_output_path}/test \
|
||||
--phones_dict=dump/phone_id_map.txt
|
||||
fi
|
||||
|
||||
# hifigan
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
echo "in hifigan syn"
|
||||
FLAGS_allocator_strategy=naive_best_fit \
|
||||
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
|
||||
python3 ${BIN_DIR}/../synthesize.py \
|
||||
--am=fastspeech2_csmsc \
|
||||
--am_config=${config_path} \
|
||||
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
|
||||
--am_stat=dump/train/speech_stats.npy \
|
||||
--voc=hifigan_csmsc \
|
||||
--voc_config=hifigan_csmsc_ckpt_0.1.1/default.yaml \
|
||||
--voc_ckpt=hifigan_csmsc_ckpt_0.1.1/snapshot_iter_2500000.pdz \
|
||||
--voc_stat=hifigan_csmsc_ckpt_0.1.1/feats_stats.npy \
|
||||
--test_metadata=dump/test/norm/metadata.jsonl \
|
||||
--output_dir=${train_output_path}/test \
|
||||
--phones_dict=dump/phone_id_map.txt
|
||||
fi
|
||||
|
||||
# wavernn
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
echo "in wavernn syn"
|
||||
FLAGS_allocator_strategy=naive_best_fit \
|
||||
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
|
||||
python3 ${BIN_DIR}/../synthesize.py \
|
||||
--am=fastspeech2_csmsc \
|
||||
--am_config=${config_path} \
|
||||
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
|
||||
--am_stat=dump/train/speech_stats.npy \
|
||||
--voc=wavernn_csmsc \
|
||||
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
|
||||
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
|
||||
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
|
||||
--test_metadata=dump/test/norm/metadata.jsonl \
|
||||
--output_dir=${train_output_path}/test \
|
||||
--phones_dict=dump/phone_id_map.txt
|
||||
fi
|
@ -0,0 +1,12 @@
|
||||
#!/bin/bash
|
||||
|
||||
config_path=$1
|
||||
train_output_path=$2
|
||||
|
||||
python3 ${BIN_DIR}/train.py \
|
||||
--train-metadata=dump/train/norm/metadata.jsonl \
|
||||
--dev-metadata=dump/dev/norm/metadata.jsonl \
|
||||
--config=${config_path} \
|
||||
--output-dir=${train_output_path} \
|
||||
--ngpu=2 \
|
||||
--phones-dict=dump/phone_id_map.txt
|
@ -0,0 +1,37 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
source path.sh
|
||||
|
||||
gpus=4,5
|
||||
stage=0
|
||||
stop_stage=100
|
||||
|
||||
conf_path=conf/default.yaml
|
||||
train_output_path=exp/default
|
||||
ckpt_name=snapshot_iter_153.pdz
|
||||
|
||||
# with the following command, you can choose the stage range you want to run
|
||||
# such as `./run.sh --stage 0 --stop-stage 0`
|
||||
# this can not be mixed use with `$1`, `$2` ...
|
||||
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
# prepare data
|
||||
./local/preprocess.sh ${conf_path} || exit -1
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
|
||||
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
# synthesize, vocoder is pwgan by default
|
||||
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
# synthesize_e2e, vocoder is pwgan by default
|
||||
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
|
||||
fi
|
@ -0,0 +1,13 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
@ -0,0 +1,165 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Normalize feature files and dump them."""
|
||||
import argparse
|
||||
import logging
|
||||
from operator import itemgetter
|
||||
from pathlib import Path
|
||||
|
||||
import jsonlines
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from tqdm import tqdm
|
||||
|
||||
from paddlespeech.t2s.datasets.data_table import DataTable
|
||||
|
||||
|
||||
def main():
|
||||
"""Run preprocessing process."""
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--metadata",
|
||||
type=str,
|
||||
required=True,
|
||||
help="directory including feature files to be normalized. "
|
||||
"you need to specify either *-scp or rootdir.")
|
||||
|
||||
parser.add_argument(
|
||||
"--dumpdir",
|
||||
type=str,
|
||||
required=True,
|
||||
help="directory to dump normalized feature files.")
|
||||
parser.add_argument(
|
||||
"--speech-stats",
|
||||
type=str,
|
||||
required=True,
|
||||
help="speech statistics file.")
|
||||
parser.add_argument(
|
||||
"--pitch-stats", type=str, required=True, help="pitch statistics file.")
|
||||
parser.add_argument(
|
||||
"--energy-stats",
|
||||
type=str,
|
||||
required=True,
|
||||
help="energy statistics file.")
|
||||
parser.add_argument(
|
||||
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
|
||||
parser.add_argument(
|
||||
"--speaker-dict", type=str, default=None, help="speaker id map file.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
dumpdir = Path(args.dumpdir).expanduser()
|
||||
# use absolute path
|
||||
dumpdir = dumpdir.resolve()
|
||||
dumpdir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# get dataset
|
||||
with jsonlines.open(args.metadata, 'r') as reader:
|
||||
metadata = list(reader)
|
||||
dataset = DataTable(
|
||||
metadata,
|
||||
converters={
|
||||
"speech": np.load,
|
||||
"pitch": np.load,
|
||||
"energy": np.load,
|
||||
})
|
||||
logging.info(f"The number of files = {len(dataset)}.")
|
||||
|
||||
# restore scaler
|
||||
speech_scaler = StandardScaler()
|
||||
speech_scaler.mean_ = np.load(args.speech_stats)[0]
|
||||
speech_scaler.scale_ = np.load(args.speech_stats)[1]
|
||||
speech_scaler.n_features_in_ = speech_scaler.mean_.shape[0]
|
||||
|
||||
pitch_scaler = StandardScaler()
|
||||
pitch_scaler.mean_ = np.load(args.pitch_stats)[0]
|
||||
pitch_scaler.scale_ = np.load(args.pitch_stats)[1]
|
||||
pitch_scaler.n_features_in_ = pitch_scaler.mean_.shape[0]
|
||||
|
||||
energy_scaler = StandardScaler()
|
||||
energy_scaler.mean_ = np.load(args.energy_stats)[0]
|
||||
energy_scaler.scale_ = np.load(args.energy_stats)[1]
|
||||
energy_scaler.n_features_in_ = energy_scaler.mean_.shape[0]
|
||||
|
||||
vocab_phones = {}
|
||||
with open(args.phones_dict, 'rt') as f:
|
||||
phn_id = [line.strip().split() for line in f.readlines()]
|
||||
for phn, id in phn_id:
|
||||
vocab_phones[phn] = int(id)
|
||||
|
||||
vocab_speaker = {}
|
||||
with open(args.speaker_dict, 'rt') as f:
|
||||
spk_id = [line.strip().split() for line in f.readlines()]
|
||||
for spk, id in spk_id:
|
||||
vocab_speaker[spk] = int(id)
|
||||
|
||||
# process each file
|
||||
output_metadata = []
|
||||
|
||||
for item in tqdm(dataset):
|
||||
utt_id = item['utt_id']
|
||||
speech = item['speech']
|
||||
pitch = item['pitch']
|
||||
energy = item['energy']
|
||||
# normalize
|
||||
speech = speech_scaler.transform(speech)
|
||||
speech_dir = dumpdir / "data_speech"
|
||||
speech_dir.mkdir(parents=True, exist_ok=True)
|
||||
speech_path = speech_dir / f"{utt_id}_speech.npy"
|
||||
np.save(speech_path, speech.astype(np.float32), allow_pickle=False)
|
||||
|
||||
pitch = pitch_scaler.transform(pitch)
|
||||
pitch_dir = dumpdir / "data_pitch"
|
||||
pitch_dir.mkdir(parents=True, exist_ok=True)
|
||||
pitch_path = pitch_dir / f"{utt_id}_pitch.npy"
|
||||
np.save(pitch_path, pitch.astype(np.float32), allow_pickle=False)
|
||||
|
||||
energy = energy_scaler.transform(energy)
|
||||
energy_dir = dumpdir / "data_energy"
|
||||
energy_dir.mkdir(parents=True, exist_ok=True)
|
||||
energy_path = energy_dir / f"{utt_id}_energy.npy"
|
||||
np.save(energy_path, energy.astype(np.float32), allow_pickle=False)
|
||||
phone_ids = [vocab_phones[p] for p in item['phones']]
|
||||
spk_id = vocab_speaker[item["speaker"]]
|
||||
record = {
|
||||
"utt_id": item['utt_id'],
|
||||
"spk_id": spk_id,
|
||||
"text": phone_ids,
|
||||
"text_lengths": item['text_lengths'],
|
||||
"speech_lengths": item['speech_lengths'],
|
||||
"durations": item['durations'],
|
||||
"speech": str(speech_path),
|
||||
"pitch": str(pitch_path),
|
||||
"energy": str(energy_path),
|
||||
"note": item['note'],
|
||||
"note_dur": item['note_dur'],
|
||||
"is_slur": item['is_slur'],
|
||||
}
|
||||
# add spk_emb for voice cloning
|
||||
if "spk_emb" in item:
|
||||
record["spk_emb"] = str(item["spk_emb"])
|
||||
|
||||
output_metadata.append(record)
|
||||
output_metadata.sort(key=itemgetter('utt_id'))
|
||||
output_metadata_path = Path(args.dumpdir) / "metadata.jsonl"
|
||||
with jsonlines.open(output_metadata_path, 'w') as writer:
|
||||
for item in output_metadata:
|
||||
writer.write(item)
|
||||
logging.info(f"metadata dumped into {output_metadata_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,359 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import os
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from operator import itemgetter
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
|
||||
import jsonlines
|
||||
import librosa
|
||||
import numpy as np
|
||||
import tqdm
|
||||
import yaml
|
||||
from yacs.config import CfgNode
|
||||
|
||||
from paddlespeech.t2s.datasets.get_feats import Energy
|
||||
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
|
||||
from paddlespeech.t2s.datasets.get_feats import Pitch
|
||||
from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length
|
||||
from paddlespeech.t2s.datasets.preprocess_utils import get_input_token
|
||||
from paddlespeech.t2s.datasets.preprocess_utils import get_sentences_svs
|
||||
from paddlespeech.t2s.datasets.preprocess_utils import get_spk_id_map
|
||||
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence
|
||||
from paddlespeech.t2s.utils import str2bool
|
||||
|
||||
ALL_SHENGMU = ['zh', 'ch', 'sh', 'b', 'p', 'm', 'f', 'd', 't', 'n', 'l', 'g', 'k', 'h', 'j',
|
||||
'q', 'x', 'r', 'z', 'c', 's', 'y', 'w']
|
||||
ALL_YUNMU = ['a', 'ai', 'an', 'ang', 'ao', 'e', 'ei', 'en', 'eng', 'er', 'i', 'ia', 'ian',
|
||||
'iang', 'iao', 'ie', 'in', 'ing', 'iong', 'iu', 'ng', 'o', 'ong', 'ou',
|
||||
'u', 'ua', 'uai', 'uan', 'uang', 'ui', 'un', 'uo', 'v', 'van', 've', 'vn']
|
||||
|
||||
def process_sentence(config: Dict[str, Any],
|
||||
fp: Path,
|
||||
sentences: Dict,
|
||||
output_dir: Path,
|
||||
mel_extractor=None,
|
||||
pitch_extractor=None,
|
||||
energy_extractor=None,
|
||||
cut_sil: bool=True,
|
||||
spk_emb_dir: Path=None,):
|
||||
utt_id = fp.stem
|
||||
record = None
|
||||
if utt_id in sentences:
|
||||
# reading, resampling may occur
|
||||
wav, _ = librosa.load(str(fp), sr=config.fs)
|
||||
if len(wav.shape) != 1:
|
||||
return record
|
||||
max_value = np.abs(wav).max()
|
||||
if max_value > 1.0:
|
||||
wav = wav / max_value
|
||||
assert len(wav.shape) == 1, f"{utt_id} is not a mono-channel audio."
|
||||
assert np.abs(wav).max(
|
||||
) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM."
|
||||
phones = sentences[utt_id][0]
|
||||
durations = sentences[utt_id][1]
|
||||
note = sentences[utt_id][2]
|
||||
note_dur = sentences[utt_id][3]
|
||||
is_slur = sentences[utt_id][4]
|
||||
speaker = sentences[utt_id][-1]
|
||||
|
||||
# extract mel feats
|
||||
logmel = mel_extractor.get_log_mel_fbank(wav)
|
||||
# change duration according to mel_length
|
||||
compare_duration_and_mel_length(sentences, utt_id, logmel)
|
||||
# utt_id may be popped in compare_duration_and_mel_length
|
||||
if utt_id not in sentences:
|
||||
return None
|
||||
phones = sentences[utt_id][0]
|
||||
durations = sentences[utt_id][1]
|
||||
num_frames = logmel.shape[0]
|
||||
word_boundary = [1 if x in ALL_YUNMU + ['AP', 'SP'] else 0 for x in phones]
|
||||
# print(sum(durations), num_frames)
|
||||
assert sum(durations) == num_frames, "the sum of durations doesn't equal to the num of mel frames. "
|
||||
speech_dir = output_dir / "data_speech"
|
||||
speech_dir.mkdir(parents=True, exist_ok=True)
|
||||
speech_path = speech_dir / (utt_id + "_speech.npy")
|
||||
np.save(speech_path, logmel)
|
||||
# extract pitch and energy
|
||||
pitch = pitch_extractor.get_pitch(wav)
|
||||
assert pitch.shape[0] == num_frames
|
||||
pitch_dir = output_dir / "data_pitch"
|
||||
pitch_dir.mkdir(parents=True, exist_ok=True)
|
||||
pitch_path = pitch_dir / (utt_id + "_pitch.npy")
|
||||
np.save(pitch_path, pitch)
|
||||
energy = energy_extractor.get_energy(wav)
|
||||
assert energy.shape[0] == num_frames
|
||||
energy_dir = output_dir / "data_energy"
|
||||
energy_dir.mkdir(parents=True, exist_ok=True)
|
||||
energy_path = energy_dir / (utt_id + "_energy.npy")
|
||||
np.save(energy_path, energy)
|
||||
|
||||
record = {
|
||||
"utt_id": utt_id,
|
||||
"phones": phones,
|
||||
"text_lengths": len(phones),
|
||||
"speech_lengths": num_frames,
|
||||
"durations": durations,
|
||||
"speech": str(speech_path),
|
||||
"pitch": str(pitch_path),
|
||||
"energy": str(energy_path),
|
||||
"speaker": speaker,
|
||||
"note": note,
|
||||
"note_dur": note_dur,
|
||||
"is_slur": is_slur,
|
||||
}
|
||||
if spk_emb_dir:
|
||||
if speaker in os.listdir(spk_emb_dir):
|
||||
embed_name = utt_id + ".npy"
|
||||
embed_path = spk_emb_dir / speaker / embed_name
|
||||
if embed_path.is_file():
|
||||
record["spk_emb"] = str(embed_path)
|
||||
else:
|
||||
return None
|
||||
return record
|
||||
|
||||
|
||||
def process_sentences(config,
|
||||
fps: List[Path],
|
||||
sentences: Dict,
|
||||
output_dir: Path,
|
||||
mel_extractor=None,
|
||||
pitch_extractor=None,
|
||||
energy_extractor=None,
|
||||
nprocs: int=1,
|
||||
cut_sil: bool=True,
|
||||
spk_emb_dir: Path=None,
|
||||
write_metadata_method: str='w',):
|
||||
if nprocs == 1:
|
||||
results = []
|
||||
for fp in tqdm.tqdm(fps, total=len(fps)):
|
||||
record = process_sentence(
|
||||
config=config,
|
||||
fp=fp,
|
||||
sentences=sentences,
|
||||
output_dir=output_dir,
|
||||
mel_extractor=mel_extractor,
|
||||
pitch_extractor=pitch_extractor,
|
||||
energy_extractor=energy_extractor,
|
||||
cut_sil=cut_sil,
|
||||
spk_emb_dir=spk_emb_dir,)
|
||||
if record:
|
||||
results.append(record)
|
||||
else:
|
||||
with ThreadPoolExecutor(nprocs) as pool:
|
||||
futures = []
|
||||
with tqdm.tqdm(total=len(fps)) as progress:
|
||||
for fp in fps:
|
||||
future = pool.submit(process_sentence, config, fp,
|
||||
sentences, output_dir, mel_extractor,
|
||||
pitch_extractor, energy_extractor,
|
||||
cut_sil, spk_emb_dir,)
|
||||
future.add_done_callback(lambda p: progress.update())
|
||||
futures.append(future)
|
||||
|
||||
results = []
|
||||
for ft in futures:
|
||||
record = ft.result()
|
||||
if record:
|
||||
results.append(record)
|
||||
|
||||
results.sort(key=itemgetter("utt_id"))
|
||||
with jsonlines.open(output_dir / "metadata.jsonl",
|
||||
write_metadata_method) as writer:
|
||||
for item in results:
|
||||
writer.write(item)
|
||||
print("Done")
|
||||
|
||||
|
||||
def main():
|
||||
# parse config and args
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Preprocess audio and then extract features.")
|
||||
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
default="opencpop",
|
||||
type=str,
|
||||
help="name of dataset, should in {opencpop} now")
|
||||
|
||||
parser.add_argument(
|
||||
"--rootdir", default=None, type=str, help="directory to dataset.")
|
||||
|
||||
parser.add_argument(
|
||||
"--dumpdir",
|
||||
type=str,
|
||||
required=True,
|
||||
help="directory to dump feature files.")
|
||||
|
||||
parser.add_argument(
|
||||
"--label-file", default=None, type=str, help="path to label file.")
|
||||
|
||||
parser.add_argument("--config", type=str, help="diffsinger config file.")
|
||||
|
||||
parser.add_argument(
|
||||
"--num-cpu", type=int, default=1, help="number of process.")
|
||||
|
||||
parser.add_argument(
|
||||
"--cut-sil",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="whether cut sil in the edge of audio")
|
||||
|
||||
parser.add_argument(
|
||||
"--spk_emb_dir",
|
||||
default=None,
|
||||
type=str,
|
||||
help="directory to speaker embedding files.")
|
||||
|
||||
parser.add_argument(
|
||||
"--write_metadata_method",
|
||||
default="w",
|
||||
type=str,
|
||||
choices=["w", "a"],
|
||||
help="How the metadata.jsonl file is written.")
|
||||
args = parser.parse_args()
|
||||
|
||||
rootdir = Path(args.rootdir).expanduser()
|
||||
dumpdir = Path(args.dumpdir).expanduser()
|
||||
# use absolute path
|
||||
dumpdir = dumpdir.resolve()
|
||||
dumpdir.mkdir(parents=True, exist_ok=True)
|
||||
label_file = Path(args.label_file).expanduser()
|
||||
|
||||
|
||||
if args.spk_emb_dir:
|
||||
spk_emb_dir = Path(args.spk_emb_dir).expanduser().resolve()
|
||||
else:
|
||||
spk_emb_dir = None
|
||||
|
||||
assert rootdir.is_dir()
|
||||
assert label_file.is_file()
|
||||
|
||||
with open(args.config, 'rt') as f:
|
||||
config = CfgNode(yaml.safe_load(f))
|
||||
|
||||
sentences, speaker_set = get_sentences_svs(label_file, dataset=args.dataset, sample_rate=config.fs, n_shift=config.n_shift,)
|
||||
|
||||
# merge_silence(sentences)
|
||||
phone_id_map_path = dumpdir / "phone_id_map.txt"
|
||||
speaker_id_map_path = dumpdir / "speaker_id_map.txt"
|
||||
get_input_token(sentences, phone_id_map_path, args.dataset)
|
||||
get_spk_id_map(speaker_set, speaker_id_map_path)
|
||||
|
||||
if args.dataset == "opencpop":
|
||||
wavdir = rootdir / "wavs"
|
||||
# split data into 3 sections
|
||||
train_file = rootdir / "train.txt"
|
||||
train_wav_files = []
|
||||
with open(train_file, "r") as f_train:
|
||||
for line in f_train.readlines():
|
||||
utt = line.split("|")[0]
|
||||
wav_name = utt + ".wav"
|
||||
wav_path = wavdir / wav_name
|
||||
train_wav_files.append(wav_path)
|
||||
|
||||
test_file = rootdir / "test.txt"
|
||||
dev_wav_files = []
|
||||
test_wav_files = []
|
||||
num_dev = 106
|
||||
count = 0
|
||||
with open(test_file, "r") as f_test:
|
||||
for line in f_test.readlines():
|
||||
count += 1
|
||||
utt = line.split("|")[0]
|
||||
wav_name = utt + ".wav"
|
||||
wav_path = wavdir / wav_name
|
||||
if count > num_dev:
|
||||
test_wav_files.append(wav_path)
|
||||
else:
|
||||
dev_wav_files.append(wav_path)
|
||||
|
||||
else:
|
||||
print("dataset should in {opencpop} now!")
|
||||
|
||||
train_dump_dir = dumpdir / "train" / "raw"
|
||||
train_dump_dir.mkdir(parents=True, exist_ok=True)
|
||||
dev_dump_dir = dumpdir / "dev" / "raw"
|
||||
dev_dump_dir.mkdir(parents=True, exist_ok=True)
|
||||
test_dump_dir = dumpdir / "test" / "raw"
|
||||
test_dump_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Extractor
|
||||
mel_extractor = LogMelFBank(
|
||||
sr=config.fs,
|
||||
n_fft=config.n_fft,
|
||||
hop_length=config.n_shift,
|
||||
win_length=config.win_length,
|
||||
window=config.window,
|
||||
n_mels=config.n_mels,
|
||||
fmin=config.fmin,
|
||||
fmax=config.fmax)
|
||||
pitch_extractor = Pitch(
|
||||
sr=config.fs,
|
||||
hop_length=config.n_shift,
|
||||
f0min=config.f0min,
|
||||
f0max=config.f0max)
|
||||
energy_extractor = Energy(
|
||||
n_fft=config.n_fft,
|
||||
hop_length=config.n_shift,
|
||||
win_length=config.win_length,
|
||||
window=config.window)
|
||||
|
||||
# process for the 3 sections
|
||||
if train_wav_files:
|
||||
process_sentences(
|
||||
config=config,
|
||||
fps=train_wav_files,
|
||||
sentences=sentences,
|
||||
output_dir=train_dump_dir,
|
||||
mel_extractor=mel_extractor,
|
||||
pitch_extractor=pitch_extractor,
|
||||
energy_extractor=energy_extractor,
|
||||
nprocs=args.num_cpu,
|
||||
cut_sil=args.cut_sil,
|
||||
spk_emb_dir=spk_emb_dir,
|
||||
write_metadata_method=args.write_metadata_method)
|
||||
if dev_wav_files:
|
||||
process_sentences(
|
||||
config=config,
|
||||
fps=dev_wav_files,
|
||||
sentences=sentences,
|
||||
output_dir=dev_dump_dir,
|
||||
mel_extractor=mel_extractor,
|
||||
pitch_extractor=pitch_extractor,
|
||||
energy_extractor=energy_extractor,
|
||||
cut_sil=args.cut_sil,
|
||||
spk_emb_dir=spk_emb_dir,
|
||||
write_metadata_method=args.write_metadata_method)
|
||||
if test_wav_files:
|
||||
process_sentences(
|
||||
config=config,
|
||||
fps=test_wav_files,
|
||||
sentences=sentences,
|
||||
output_dir=test_dump_dir,
|
||||
mel_extractor=mel_extractor,
|
||||
pitch_extractor=pitch_extractor,
|
||||
energy_extractor=energy_extractor,
|
||||
nprocs=args.num_cpu,
|
||||
cut_sil=args.cut_sil,
|
||||
spk_emb_dir=spk_emb_dir,
|
||||
write_metadata_method=args.write_metadata_method)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,222 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import jsonlines
|
||||
import numpy as np
|
||||
import paddle
|
||||
import yaml
|
||||
from paddle import DataParallel
|
||||
from paddle import distributed as dist
|
||||
from paddle.io import DataLoader
|
||||
from paddle.io import DistributedBatchSampler
|
||||
from yacs.config import CfgNode
|
||||
|
||||
from paddlespeech.t2s.datasets.am_batch_fn import diffsinger_multi_spk_batch_fn
|
||||
from paddlespeech.t2s.datasets.am_batch_fn import diffsinger_single_spk_batch_fn
|
||||
from paddlespeech.t2s.datasets.data_table import DataTable
|
||||
from paddlespeech.t2s.models.diffsinger import DiffSinger
|
||||
from paddlespeech.t2s.models.diffsinger import DiffSingerEvaluator
|
||||
from paddlespeech.t2s.models.diffsinger import DiffSingerUpdater
|
||||
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
|
||||
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
|
||||
from paddlespeech.t2s.training.optimizer import build_optimizers
|
||||
from paddlespeech.t2s.training.seeding import seed_everything
|
||||
from paddlespeech.t2s.training.trainer import Trainer
|
||||
from paddlespeech.t2s.utils import str2bool
|
||||
|
||||
|
||||
def train_sp(args, config):
|
||||
# decides device type and whether to run in parallel
|
||||
# setup running environment correctly
|
||||
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
|
||||
paddle.set_device("cpu")
|
||||
else:
|
||||
paddle.set_device("gpu")
|
||||
world_size = paddle.distributed.get_world_size()
|
||||
if world_size > 1:
|
||||
paddle.distributed.init_parallel_env()
|
||||
|
||||
# set the random seed, it is a must for multiprocess training
|
||||
seed_everything(config.seed)
|
||||
|
||||
print(
|
||||
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
|
||||
)
|
||||
fields = [
|
||||
"text", "text_lengths", "speech", "speech_lengths", "durations", "pitch", "energy",
|
||||
"note", "note_dur", "is_slur"]
|
||||
converters = {"speech": np.load, "pitch": np.load, "energy": np.load}
|
||||
spk_num = None
|
||||
if args.speaker_dict is not None:
|
||||
print("multiple speaker diffsinger!")
|
||||
collate_fn = diffsinger_multi_spk_batch_fn
|
||||
with open(args.speaker_dict, 'rt') as f:
|
||||
spk_id = [line.strip().split() for line in f.readlines()]
|
||||
spk_num = len(spk_id)
|
||||
fields += ["spk_id"]
|
||||
elif args.voice_cloning:
|
||||
print("Training voice cloning!")
|
||||
collate_fn = diffsinger_multi_spk_batch_fn
|
||||
fields += ["spk_emb"]
|
||||
converters["spk_emb"] = np.load
|
||||
else:
|
||||
collate_fn = diffsinger_single_spk_batch_fn
|
||||
print("single speaker diffsinger!")
|
||||
|
||||
print("spk_num:", spk_num)
|
||||
|
||||
# dataloader has been too verbose
|
||||
logging.getLogger("DataLoader").disabled = True
|
||||
|
||||
# construct dataset for training and validation
|
||||
with jsonlines.open(args.train_metadata, 'r') as reader:
|
||||
train_metadata = list(reader)
|
||||
train_dataset = DataTable(
|
||||
data=train_metadata,
|
||||
fields=fields,
|
||||
converters=converters, )
|
||||
with jsonlines.open(args.dev_metadata, 'r') as reader:
|
||||
dev_metadata = list(reader)
|
||||
dev_dataset = DataTable(
|
||||
data=dev_metadata,
|
||||
fields=fields,
|
||||
converters=converters, )
|
||||
|
||||
# collate function and dataloader
|
||||
|
||||
train_sampler = DistributedBatchSampler(
|
||||
train_dataset,
|
||||
batch_size=config.batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True)
|
||||
|
||||
print("samplers done!")
|
||||
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
batch_sampler=train_sampler,
|
||||
collate_fn=collate_fn,
|
||||
num_workers=config.num_workers)
|
||||
|
||||
dev_dataloader = DataLoader(
|
||||
dev_dataset,
|
||||
shuffle=False,
|
||||
drop_last=False,
|
||||
batch_size=config.batch_size,
|
||||
collate_fn=collate_fn,
|
||||
num_workers=config.num_workers)
|
||||
print("dataloaders done!")
|
||||
|
||||
with open(args.phones_dict, "r") as f:
|
||||
phn_id = [line.strip().split() for line in f.readlines()]
|
||||
vocab_size = len(phn_id)
|
||||
print("vocab_size:", vocab_size)
|
||||
|
||||
odim = config.n_mels
|
||||
model = DiffSinger(
|
||||
idim=vocab_size, odim=odim, spk_num=spk_num, **config["model"])
|
||||
if world_size > 1:
|
||||
model = DataParallel(model)
|
||||
print("model done!")
|
||||
|
||||
optimizer = build_optimizers(model, **config["optimizer"])
|
||||
print("optimizer done!")
|
||||
|
||||
output_dir = Path(args.output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
if dist.get_rank() == 0:
|
||||
config_name = args.config.split("/")[-1]
|
||||
# copy conf to output_dir
|
||||
shutil.copyfile(args.config, output_dir / config_name)
|
||||
|
||||
if "enable_speaker_classifier" in config.model:
|
||||
enable_spk_cls = config.model.enable_speaker_classifier
|
||||
else:
|
||||
enable_spk_cls = False
|
||||
|
||||
updater = DiffSingerUpdater(
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
dataloader=train_dataloader,
|
||||
output_dir=output_dir,
|
||||
enable_spk_cls=enable_spk_cls,
|
||||
**config["updater"], )
|
||||
|
||||
trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir)
|
||||
|
||||
evaluator = DiffSingerEvaluator(
|
||||
model,
|
||||
dev_dataloader,
|
||||
output_dir=output_dir,
|
||||
enable_spk_cls=enable_spk_cls,
|
||||
**config["updater"], )
|
||||
|
||||
if dist.get_rank() == 0:
|
||||
trainer.extend(evaluator, trigger=(1, "epoch"))
|
||||
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
|
||||
trainer.extend(
|
||||
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
|
||||
trainer.run()
|
||||
|
||||
|
||||
def main():
|
||||
# parse args and config and redirect to train_sp
|
||||
parser = argparse.ArgumentParser(description="Train a DiffSinger model.")
|
||||
parser.add_argument("--config", type=str, help="diffsinger config file.")
|
||||
parser.add_argument("--train-metadata", type=str, help="training data.")
|
||||
parser.add_argument("--dev-metadata", type=str, help="dev data.")
|
||||
parser.add_argument("--output-dir", type=str, help="output dir.")
|
||||
parser.add_argument(
|
||||
"--ngpu", type=int, default=1, help="if ngpu=0, use cpu.")
|
||||
parser.add_argument(
|
||||
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
|
||||
parser.add_argument(
|
||||
"--speaker-dict",
|
||||
type=str,
|
||||
default=None,
|
||||
help="speaker id map file for multiple speaker model.")
|
||||
|
||||
parser.add_argument(
|
||||
"--voice-cloning",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="whether training voice cloning model.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.config) as f:
|
||||
config = CfgNode(yaml.safe_load(f))
|
||||
|
||||
print("========Args========")
|
||||
print(yaml.safe_dump(vars(args)))
|
||||
print("========Config========")
|
||||
print(config)
|
||||
print(
|
||||
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
|
||||
)
|
||||
|
||||
# dispatch
|
||||
if args.ngpu > 1:
|
||||
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
|
||||
else:
|
||||
train_sp(args, config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,15 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .diffsinger import *
|
||||
from .diffsinger_updater import *
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,248 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
from paddle import DataParallel
|
||||
from paddle import distributed as dist
|
||||
from paddle.io import DataLoader
|
||||
from paddle.nn import Layer
|
||||
from paddle.optimizer import Optimizer
|
||||
|
||||
from paddlespeech.t2s.models.diffsinger import DiffSingerLoss
|
||||
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
|
||||
from paddlespeech.t2s.training.reporter import report
|
||||
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
|
||||
|
||||
logging.basicConfig(
|
||||
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
|
||||
datefmt='[%Y-%m-%d %H:%M:%S]')
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
|
||||
class DiffSingerUpdater(StandardUpdater):
|
||||
def __init__(
|
||||
self,
|
||||
model: Layer,
|
||||
optimizer: Optimizer,
|
||||
dataloader: DataLoader,
|
||||
init_state=None,
|
||||
use_masking: bool=False,
|
||||
spk_loss_scale: float=0.02,
|
||||
use_weighted_masking: bool=False,
|
||||
output_dir: Path=None,
|
||||
enable_spk_cls: bool=False, ):
|
||||
super().__init__(model, optimizer, dataloader, init_state=None)
|
||||
|
||||
self.criterion = DiffSingerLoss(
|
||||
use_masking=use_masking,
|
||||
use_weighted_masking=use_weighted_masking, )
|
||||
|
||||
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
||||
self.filehandler = logging.FileHandler(str(log_file))
|
||||
logger.addHandler(self.filehandler)
|
||||
self.logger = logger
|
||||
self.msg = ""
|
||||
self.spk_loss_scale = spk_loss_scale
|
||||
self.enable_spk_cls = enable_spk_cls
|
||||
|
||||
def update_core(self, batch):
|
||||
self.msg = "Rank: {}, ".format(dist.get_rank())
|
||||
losses_dict = {}
|
||||
# spk_id!=None in multiple spk diffsinger
|
||||
spk_id = batch["spk_id"] if "spk_id" in batch else None
|
||||
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
|
||||
# No explicit speaker identifier labels are used during voice cloning training.
|
||||
if spk_emb is not None:
|
||||
spk_id = None
|
||||
|
||||
if type(
|
||||
self.model
|
||||
) == DataParallel and self.model._layers.spk_num and self.model._layers.enable_speaker_classifier:
|
||||
with self.model.no_sync():
|
||||
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
|
||||
text=batch["text"],
|
||||
note=batch["note"],
|
||||
note_dur=batch["note_dur"],
|
||||
is_slur=batch["is_slur"],
|
||||
text_lengths=batch["text_lengths"],
|
||||
speech=batch["speech"],
|
||||
speech_lengths=batch["speech_lengths"],
|
||||
durations=batch["durations"],
|
||||
pitch=batch["pitch"],
|
||||
energy=batch["energy"],
|
||||
spk_id=spk_id,
|
||||
spk_emb=spk_emb)
|
||||
else:
|
||||
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
|
||||
text=batch["text"],
|
||||
note=batch["note"],
|
||||
note_dur=batch["note_dur"],
|
||||
is_slur=batch["is_slur"],
|
||||
text_lengths=batch["text_lengths"],
|
||||
speech=batch["speech"],
|
||||
speech_lengths=batch["speech_lengths"],
|
||||
durations=batch["durations"],
|
||||
pitch=batch["pitch"],
|
||||
energy=batch["energy"],
|
||||
spk_id=spk_id,
|
||||
spk_emb=spk_emb)
|
||||
|
||||
l1_loss, duration_loss, pitch_loss, energy_loss, speaker_loss = self.criterion(
|
||||
after_outs=after_outs,
|
||||
before_outs=before_outs,
|
||||
d_outs=d_outs,
|
||||
p_outs=p_outs,
|
||||
e_outs=e_outs,
|
||||
ys=ys,
|
||||
ds=batch["durations"],
|
||||
ps=batch["pitch"],
|
||||
es=batch["energy"],
|
||||
ilens=batch["text_lengths"],
|
||||
olens=olens,
|
||||
spk_logits=spk_logits,
|
||||
spk_ids=spk_id, )
|
||||
|
||||
scaled_speaker_loss = self.spk_loss_scale * speaker_loss
|
||||
loss = l1_loss + duration_loss + pitch_loss + energy_loss + scaled_speaker_loss
|
||||
|
||||
optimizer = self.optimizer
|
||||
optimizer.clear_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
report("train/loss", float(loss))
|
||||
report("train/l1_loss", float(l1_loss))
|
||||
report("train/duration_loss", float(duration_loss))
|
||||
report("train/pitch_loss", float(pitch_loss))
|
||||
report("train/energy_loss", float(energy_loss))
|
||||
if self.enable_spk_cls:
|
||||
report("train/speaker_loss", float(speaker_loss))
|
||||
report("train/scaled_speaker_loss", float(scaled_speaker_loss))
|
||||
|
||||
losses_dict["l1_loss"] = float(l1_loss)
|
||||
losses_dict["duration_loss"] = float(duration_loss)
|
||||
losses_dict["pitch_loss"] = float(pitch_loss)
|
||||
losses_dict["energy_loss"] = float(energy_loss)
|
||||
losses_dict["energy_loss"] = float(energy_loss)
|
||||
if self.enable_spk_cls:
|
||||
losses_dict["speaker_loss"] = float(speaker_loss)
|
||||
losses_dict["scaled_speaker_loss"] = float(scaled_speaker_loss)
|
||||
losses_dict["loss"] = float(loss)
|
||||
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
||||
for k, v in losses_dict.items())
|
||||
|
||||
|
||||
class DiffSingerEvaluator(StandardEvaluator):
|
||||
def __init__(self,
|
||||
model: Layer,
|
||||
dataloader: DataLoader,
|
||||
use_masking: bool=False,
|
||||
use_weighted_masking: bool=False,
|
||||
spk_loss_scale: float=0.02,
|
||||
output_dir: Path=None,
|
||||
enable_spk_cls: bool=False):
|
||||
super().__init__(model, dataloader)
|
||||
|
||||
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
||||
self.filehandler = logging.FileHandler(str(log_file))
|
||||
logger.addHandler(self.filehandler)
|
||||
self.logger = logger
|
||||
self.msg = ""
|
||||
self.spk_loss_scale = spk_loss_scale
|
||||
self.enable_spk_cls = enable_spk_cls
|
||||
|
||||
self.criterion = DiffSingerLoss(
|
||||
use_masking=use_masking, use_weighted_masking=use_weighted_masking)
|
||||
|
||||
def evaluate_core(self, batch):
|
||||
self.msg = "Evaluate: "
|
||||
losses_dict = {}
|
||||
# spk_id!=None in multiple spk diffsinger
|
||||
spk_id = batch["spk_id"] if "spk_id" in batch else None
|
||||
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
|
||||
if spk_emb is not None:
|
||||
spk_id = None
|
||||
|
||||
if type(
|
||||
self.model
|
||||
) == DataParallel and self.model._layers.spk_num and self.model._layers.enable_speaker_classifier:
|
||||
with self.model.no_sync():
|
||||
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
|
||||
text=batch["text"],
|
||||
note=batch["note"],
|
||||
note_dur=batch["note_dur"],
|
||||
is_slur=batch["is_slur"],
|
||||
text_lengths=batch["text_lengths"],
|
||||
speech=batch["speech"],
|
||||
speech_lengths=batch["speech_lengths"],
|
||||
durations=batch["durations"],
|
||||
pitch=batch["pitch"],
|
||||
energy=batch["energy"],
|
||||
spk_id=spk_id,
|
||||
spk_emb=spk_emb)
|
||||
else:
|
||||
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
|
||||
text=batch["text"],
|
||||
note=batch["note"],
|
||||
note_dur=batch["note_dur"],
|
||||
is_slur=batch["is_slur"],
|
||||
text_lengths=batch["text_lengths"],
|
||||
speech=batch["speech"],
|
||||
speech_lengths=batch["speech_lengths"],
|
||||
durations=batch["durations"],
|
||||
pitch=batch["pitch"],
|
||||
energy=batch["energy"],
|
||||
spk_id=spk_id,
|
||||
spk_emb=spk_emb)
|
||||
|
||||
l1_loss, duration_loss, pitch_loss, energy_loss, speaker_loss = self.criterion(
|
||||
after_outs=after_outs,
|
||||
before_outs=before_outs,
|
||||
d_outs=d_outs,
|
||||
p_outs=p_outs,
|
||||
e_outs=e_outs,
|
||||
ys=ys,
|
||||
ds=batch["durations"],
|
||||
ps=batch["pitch"],
|
||||
es=batch["energy"],
|
||||
ilens=batch["text_lengths"],
|
||||
olens=olens,
|
||||
spk_logits=spk_logits,
|
||||
spk_ids=spk_id, )
|
||||
|
||||
scaled_speaker_loss = self.spk_loss_scale * speaker_loss
|
||||
loss = l1_loss + duration_loss + pitch_loss + energy_loss + scaled_speaker_loss
|
||||
|
||||
report("eval/loss", float(loss))
|
||||
report("eval/l1_loss", float(l1_loss))
|
||||
report("eval/duration_loss", float(duration_loss))
|
||||
report("eval/pitch_loss", float(pitch_loss))
|
||||
report("eval/energy_loss", float(energy_loss))
|
||||
if self.enable_spk_cls:
|
||||
report("train/speaker_loss", float(speaker_loss))
|
||||
report("train/scaled_speaker_loss", float(scaled_speaker_loss))
|
||||
|
||||
losses_dict["l1_loss"] = float(l1_loss)
|
||||
losses_dict["duration_loss"] = float(duration_loss)
|
||||
losses_dict["pitch_loss"] = float(pitch_loss)
|
||||
losses_dict["energy_loss"] = float(energy_loss)
|
||||
if self.enable_spk_cls:
|
||||
losses_dict["speaker_loss"] = float(speaker_loss)
|
||||
losses_dict["scaled_speaker_loss"] = float(scaled_speaker_loss)
|
||||
losses_dict["loss"] = float(loss)
|
||||
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
||||
for k, v in losses_dict.items())
|
||||
self.logger.info(self.msg)
|
Loading…
Reference in new issue