model test pass

pull/521/head
Hui Zhang 5 years ago
parent 6e412116b5
commit c329c5dea1

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import math
import collections import collections
import numpy as np import numpy as np
import paddle import paddle
@ -19,13 +20,17 @@ from paddle import nn
from paddle.nn import functional as F from paddle.nn import functional as F
from paddle.nn import initializer as I from paddle.nn import initializer as I
__all__ = ['DeepSpeech2']
def brelu(x, t_min=0.0, t_max=24.0, name=None): def brelu(x, t_min=0.0, t_max=24.0, name=None):
return paddle.min(paddle.max(x, t_min), t_max) t_min = paddle.to_tensor(t_min)
t_max = paddle.to_tensor(t_max)
return x.maximum(t_min).minimum(t_max)
def sequence_mask(x_len, max_len=None, dtype='float32'): def sequence_mask(x_len, max_len=None, dtype='float32'):
max_len = (max_len or paddle.max(x)) max_len = max_len or x_len.max()
x_len = paddle.unsqueeze(x_len, -1) x_len = paddle.unsqueeze(x_len, -1)
row_vector = paddle.arange(max_len) row_vector = paddle.arange(max_len)
mask = row_vector < x_len mask = row_vector < x_len
@ -76,14 +81,13 @@ class ConvBn(nn.Layer):
padding=padding, padding=padding,
weight_attr=None, weight_attr=None,
bias_attr=None, bias_attr=None,
data_format='NCHW', ) data_format='NCHW')
self.bn = nn.BatchNorm2D( self.bn = nn.BatchNorm2D(
num_channels=num_channels_out, num_channels_out,
param_attr=None, weight_attr=None,
bias_attr=None, bias_attr=None,
moving_mean_name=None, data_format='NCHW')
moving_variance_name=None,
data_format='NCHW', )
self.act = paddle.relu if act == 'relu' else brelu self.act = paddle.relu if act == 'relu' else brelu
def forward(self, x, x_len): def forward(self, x, x_len):
@ -94,13 +98,14 @@ class ConvBn(nn.Layer):
x = self.bn(x) x = self.bn(x)
x = self.act(x) x = self.act(x)
x_len = (x_len - self.kernel_size[1] + 2 * self.padding[1]
) // self.stride[1] + 1
# reset padding part to 0 # reset padding part to 0
masks = sequence_mask(x_len) #[B, T] masks = sequence_mask(x_len) #[B, T]
masks = masks.unsqueeze(1).unsqueeze(1) # [B, 1, 1, T] masks = masks.unsqueeze(1).unsqueeze(1) # [B, 1, 1, T]
x = x.multiply(masks) x = x.multiply(masks)
x_len = (x_len - self.kernel_size[1] + 2 * self.padding[1]
) // self.stride[1] + 1
return x, x_len return x, x_len
@ -128,10 +133,12 @@ class ConvStack(nn.Layer):
stride=self.stride, stride=self.stride,
padding=self.padding, padding=self.padding,
act='brelu', ) act='brelu', )
out_channel = 32
self.conv_stack = nn.LayerList([ self.conv_stack = nn.LayerList([
ConvBn( ConvBn(
num_channels_in=32, num_channels_in=32,
num_channels_out=32, num_channels_out=out_channel,
kernel_size=(21, 11), kernel_size=(21, 11),
stride=(2, 1), stride=(2, 1),
padding=(10, 5), padding=(10, 5),
@ -142,7 +149,7 @@ class ConvStack(nn.Layer):
output_height = (feat_size - 1) // 2 + 1 output_height = (feat_size - 1) // 2 + 1
for i in range(self.num_stacks - 1): for i in range(self.num_stacks - 1):
output_height = (output_height - 1) // 2 + 1 output_height = (output_height - 1) // 2 + 1
self.output_height = output_height self.output_height = out_channel * output_height
def forward(self, x, x_len): def forward(self, x, x_len):
""" """
@ -239,13 +246,14 @@ class GRUCellShare(nn.RNNCellBase):
""" """
def __init__(self, def __init__(self,
input_size,
hidden_size, hidden_size,
weight_ih_attr=None, weight_ih_attr=None,
weight_hh_attr=None, weight_hh_attr=None,
bias_ih_attr=None, bias_ih_attr=None,
bias_hh_attr=None, bias_hh_attr=None,
name=None): name=None):
super(GRUCell, self).__init__() super().__init__()
std = 1.0 / math.sqrt(hidden_size) std = 1.0 / math.sqrt(hidden_size)
self.weight_hh = self.create_parameter( self.weight_hh = self.create_parameter(
(3 * hidden_size, hidden_size), (3 * hidden_size, hidden_size),
@ -316,7 +324,6 @@ class BiRNNWithBN(nn.Layer):
def __init__(self, i_size, h_size, share_weights): def __init__(self, i_size, h_size, share_weights):
super().__init__() super().__init__()
self.share_weights = share_weights self.share_weights = share_weights
self.pad_value = paddle.to_tensor(np.array([0.0], dtype=np.float32)) self.pad_value = paddle.to_tensor(np.array([0.0], dtype=np.float32))
if self.share_weights: if self.share_weights:
@ -344,7 +351,7 @@ class BiRNNWithBN(nn.Layer):
def forward(self, x, x_len): def forward(self, x, x_len):
# x, shape [B, T, D] # x, shape [B, T, D]
fw_x = self.fw_bn(self.fw_fc(x)) fw_x = self.fw_bn(self.fw_fc(x))
bw_x = self.bw_bn(self.bw_bn(x)) bw_x = self.bw_bn(self.bw_fc(x))
fw_x, _ = self.fw_rnn(inputs=fw_x, sequence_length=x_len) fw_x, _ = self.fw_rnn(inputs=fw_x, sequence_length=x_len)
bw_x, _ = self.bw_rnn(inputs=bw_x, sequence_length=x_len) bw_x, _ = self.bw_rnn(inputs=bw_x, sequence_length=x_len)
x = paddle.concat([fw_x, bw_x], axis=-1) x = paddle.concat([fw_x, bw_x], axis=-1)
@ -367,16 +374,16 @@ class BiGRUWithBN(nn.Layer):
:rtype: Variable :rtype: Variable
""" """
def __init__(self, i_size, act): def __init__(self, i_size, h_size, act):
super().__init__() super().__init__()
hidden_size = i_size * 3 hidden_size = h_size * 3
self.fw_fc = nn.Linear(i_size, hidden_size) self.fw_fc = nn.Linear(i_size, hidden_size)
self.fw_bn = nn.BatchNorm1D(hidden_size, data_format='NLC') self.fw_bn = nn.BatchNorm1D(hidden_size, data_format='NLC')
self.bw_fc = nn.Linear(i_size, hidden_size) self.bw_fc = nn.Linear(i_size, hidden_size)
self.bw_bn = nn.BatchNorm1D(hidden_size, data_format='NLC') self.bw_bn = nn.BatchNorm1D(hidden_size, data_format='NLC')
self.fw_cell = GRUCellShare(hidden_size) self.fw_cell = GRUCellShare(input_size=hidden_size, hidden_size=h_size)
self.bw_cell = GRUCellShare(hidden_size) self.bw_cell = GRUCellShare(input_size=hidden_size, hidden_size=h_size)
self.fw_rnn = nn.RNN( self.fw_rnn = nn.RNN(
self.fw_cell, is_reverse=False, time_major=False) #[B, T, D] self.fw_cell, is_reverse=False, time_major=False) #[B, T, D]
self.bw_rnn = nn.RNN( self.bw_rnn = nn.RNN(
@ -385,7 +392,7 @@ class BiGRUWithBN(nn.Layer):
def forward(self, x, x_len): def forward(self, x, x_len):
# x, shape [B, T, D] # x, shape [B, T, D]
fw_x = self.fw_bn(self.fw_fc(x)) fw_x = self.fw_bn(self.fw_fc(x))
bw_x = self.bw_bn(self.bw_bn(x)) bw_x = self.bw_bn(self.bw_fc(x))
fw_x, _ = self.fw_rnn(inputs=fw_x, sequence_length=x_len) fw_x, _ = self.fw_rnn(inputs=fw_x, sequence_length=x_len)
bw_x, _ = self.bw_rnn(inputs=bw_x, sequence_length=x_len) bw_x, _ = self.bw_rnn(inputs=bw_x, sequence_length=x_len)
x = paddle.concat([fw_x, bw_x], axis=-1) x = paddle.concat([fw_x, bw_x], axis=-1)
@ -412,17 +419,20 @@ class RNNStack(nn.Layer):
""" """
def __init__(self, i_size, h_size, num_stacks, use_gru, share_rnn_weights): def __init__(self, i_size, h_size, num_stacks, use_gru, share_rnn_weights):
super().__init__()
self.rnn_stacks = nn.LayerList() self.rnn_stacks = nn.LayerList()
for i in range(num_stacks): for i in range(num_stacks):
if use_gru: if use_gru:
#default:GRU using tanh #default:GRU using tanh
self.rnn_stacks.append(BiGRUWithBN(size=i_size, act="relu")) self.rnn_stacks.append(
BiGRUWithBN(i_size=i_size, h_size=h_size, act="relu"))
else: else:
self.rnn_stacks.append( self.rnn_stacks.append(
BiRNNWithBN( BiRNNWithBN(
i_size=i_size, i_size=i_size,
size=h_size, h_size=h_size,
share_weights=share_rnn_weights, )) share_weights=share_rnn_weights))
i_size = h_size * 2
def forward(self, x, x_len): def forward(self, x, x_len):
""" """
@ -471,30 +481,25 @@ class DeepSpeech2(nn.Layer):
num_rnn_layers=3, num_rnn_layers=3,
rnn_size=256, rnn_size=256,
use_gru=False, use_gru=False,
share_rnn_weight=True): share_rnn_weights=True):
super().__init__() super().__init__()
self.feat_size = feat_size # 161 for linear self.feat_size = feat_size # 161 for linear
self.dict_size = dict_size self.dict_size = dict_size
self.conv = ConvStack(num_conv_layers) self.conv = ConvStack(feat_size, num_conv_layers)
i_size = self.conv.output_height(feat_size) # H after conv stack i_size = self.conv.output_height # H after conv stack
self.rnn = RNNStack( self.rnn = RNNStack(
i_size=i_size, i_size=i_size,
h_size=rnn_size, h_size=rnn_size,
num_stacks=num_rnn_layers, num_stacks=num_rnn_layers,
use_gru=use_gru, use_gru=use_gru,
share_rnn_weights=share_rnn_weights, ) share_rnn_weights=share_rnn_weights)
self.fc = nn.Linaer(rnn_size * 2, dict_size + 1) self.fc = nn.Linear(rnn_size * 2, dict_size + 1)
self.loss = nn.CTCLoss(blank=dict_size, reduction='none') self.loss = nn.CTCLoss(blank=dict_size, reduction='none')
def forward(self, audio, text, audio_len, text_len): def predict(self, audio, audio_len):
"""
audio: shape [B, D, T]
text: shape [B, T]
audio_len: shape [B]
text_len: shape [B]
"""
# [B, D, T] -> [B, C=1, D, T] # [B, D, T] -> [B, C=1, D, T]
audio = audio.unsqueeze(1) audio = audio.unsqueeze(1)
@ -504,7 +509,7 @@ class DeepSpeech2(nn.Layer):
# convert data from convolution feature map to sequence of vectors # convert data from convolution feature map to sequence of vectors
B, C, D, T = paddle.shape(x) B, C, D, T = paddle.shape(x)
x = x.transpose([0, 3, 1, 2]) #[B, T, C, D] x = x.transpose([0, 3, 1, 2]) #[B, T, C, D]
x = x.reshape([0, -1, C * D]) #[B, T, C*D] x = x.reshape([B, T, C * D]) #[B, T, C*D]
# remove padding part # remove padding part
x, audio_len = self.rnn(x, audio_len) #[B, T, D] x, audio_len = self.rnn(x, audio_len) #[B, T, D]
@ -512,14 +517,31 @@ class DeepSpeech2(nn.Layer):
logits = self.fc(x) #[B, T, V + 1] logits = self.fc(x) #[B, T, V + 1]
#ctcdecoder need probs, not log_probs #ctcdecoder need probs, not log_probs
probs = F.log_softmax(logits) probs = F.softmax(logits)
if not text: return logits, probs
return probs, None
else: @paddle.no_grad()
def infer(self, audio, audio_len):
_, probs = self.predict(audio, audio_len)
return probs
def forward(self, audio, text, audio_len, text_len):
"""
audio: shape [B, D, T]
text: shape [B, T]
audio_len: shape [B]
text_len: shape [B]
"""
logits, probs = self.predict(audio, audio_len)
# warp-ctc do softmax on activations # warp-ctc do softmax on activations
# warp-ctc need activation with shape [T, B, V + 1] # warp-ctc need activation with shape [T, B, V + 1]
logits = logits.transpose([1, 0, 2]) logits = logits.transpose([1, 0, 2])
print(logits.shape)
print(text.shape)
print(audio_len.shape)
print(text_len.shape)
ctc_loss = self.loss(logits, text, audio_len, text_len) ctc_loss = self.loss(logits, text, audio_len, text_len)
ctc_loss = paddle.reduce_sum(ctc_loss) ctc_loss /= text_len # norm_by_times
ctc_loss = ctc_loss.sum()
return probs, ctc_loss return probs, ctc_loss

Loading…
Cancel
Save