add ernie sat synthesize_e2e, test=tts (#2287)

pull/2300/head
TianYuan 2 years ago committed by GitHub
parent aa4c9ec3ed
commit c1d4551055
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -10,3 +10,4 @@
* voc3 - MultiBand MelGAN
* vc0 - Tacotron2 Voice Cloning with GE2E
* vc1 - FastSpeech2 Voice Cloning with GE2E
* ernie_sat - ERNIE-SAT

@ -1 +1,151 @@
# ERNIE SAT with AISHELL3 dataset
# ERNIE-SAT with AISHELL3 dataset
ERNIE-SAT 是可以同时处理中英文的跨语言的语音-语言跨模态大模型,其在语音编辑、个性化语音合成以及跨语言的语音合成等多个任务取得了领先效果。可以应用于语音编辑、个性化合成、语音克隆、同传翻译等一系列场景,该项目供研究使用。
## 模型框架
ERNIE-SAT 中我们提出了两项创新:
- 在预训练过程中将中英双语对应的音素作为输入,实现了跨语言、个性化的软音素映射
- 采用语言和语音的联合掩码学习实现了语言和语音的对齐
<p align="center">
<img src="https://user-images.githubusercontent.com/24568452/186110814-1b9c6618-a0ab-4c0c-bb3d-3d860b0e8cc2.png" />
</p>
## Dataset
### Download and Extract
Download AISHELL-3 from it's [Official Website](http://www.aishelltech.com/aishell_3) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/data_aishell3`.
### Get MFA Result and Extract
We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for aishell3_fastspeech2.
You can download from here [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo.
## Get Started
Assume the path to the dataset is `~/datasets/data_aishell3`.
Assume the path to the MFA result of AISHELL-3 is `./aishell3_alignment_tone`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
- synthesize waveform from text file.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── norm
├── raw
└── speech_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, speaker, and id of each utterance.
### Model Training
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
`./local/train.sh` calls `${BIN_DIR}/train.py`.
### Synthesizing
We use [HiFiGAN](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/voc5) as the neural vocoder.
Download pretrained HiFiGAN model from [hifigan_aishell3_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip) and unzip it.
```bash
unzip hifigan_aishell3_ckpt_0.2.0.zip
```
HiFiGAN checkpoint contains files listed below.
```text
hifigan_aishell3_ckpt_0.2.0
├── default.yaml # default config used to train HiFiGAN
├── feats_stats.npy # statistics used to normalize spectrogram when training HiFiGAN
└── snapshot_iter_2500000.pdz # generator parameters of HiFiGAN
```
`./local/synthesize.sh` calls `${BIN_DIR}/../synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
## Speech Synthesis and Speech Editing
### Prepare
**prepare aligner**
```bash
mkdir -p tools/aligner
cd tools
# download MFA
wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz
# extract MFA
tar xvf montreal-forced-aligner_linux.tar.gz
# fix .so of MFA
cd montreal-forced-aligner/lib
ln -snf libpython3.6m.so.1.0 libpython3.6m.so
cd -
# download align models and dicts
cd aligner
wget https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/aishell3_model.zip
wget https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/simple.lexicon
wget https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/vctk_model.zip
wget https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/cmudict-0.7b
cd ../../
```
**prepare pretrained FastSpeech2 models**
ERNIE-SAT use FastSpeech2 as phoneme duration predictor:
```bash
mkdir download
cd download
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_conformer_baker_ckpt_0.5.zip
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_ljspeech_ckpt_0.5.zip
unzip fastspeech2_conformer_baker_ckpt_0.5.zip
unzip fastspeech2_nosil_ljspeech_ckpt_0.5.zip
cd ../
```
**prepare source data**
```bash
mkdir source
cd source
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/SSB03540307.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/SSB03540428.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/LJ050-0278.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/p243_313.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/p299_096.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/this_was_not_the_show_for_me.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/README.md
cd ../
```
You can check the text of downloaded wavs in `source/README.md`.
### Speech Synthesis and Speech Editing
```bash
./run.sh --stage 3 --stop-stage 3 --gpus 0
```
`stage 3` of `run.sh` calls `local/synthesize_e2e.sh`, `stage 0` of it is **Speech Synthesis** and `stage 1` of it is **Speech Editing**.
You can modify `--wav_path`、`--old_str` and `--new_str` yourself, `--old_str` should be the text corresponding to the audio of `--wav_path`, `--new_str` should be designed according to `--task_name`, both `--source_lang` and `--target_lang` should be `zh` for model trained with AISHELL3 dataset.
## Pretrained Model
Pretrained ErnieSAT model:
- [erniesat_aishell3_ckpt_1.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/erniesat_aishell3_ckpt_1.2.0.zip)
Model | Step | eval/mlm_loss | eval/loss
:-------------:| :------------:| :-----: | :-----:
default| 8(gpu) x 289500|51.723782|51.723782

@ -1,3 +1,6 @@
# This configuration tested on 8 GPUs (A100) with 80GB GPU memory.
# It takes around 3 days to finish the training,You can adjust
# batch_size、num_workers here and ngpu in local/train.sh for your machine
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
@ -21,8 +24,8 @@ mlm_prob: 0.8
###########################################################
# DATA SETTING #
###########################################################
batch_size: 20
num_workers: 2
batch_size: 40
num_workers: 8
###########################################################
# MODEL SETTING #

@ -4,28 +4,11 @@ config_path=$1
train_output_path=$2
ckpt_name=$3
stage=1
stop_stage=1
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize.py \
--erniesat_config=${config_path} \
--erniesat_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--erniesat_stat=dump/train/speech_stats.npy \
--voc=pwgan_aishell3 \
--voc_config=pwg_aishell3_ckpt_0.5/default.yaml \
--voc_ckpt=pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \
--voc_stat=pwg_aishell3_ckpt_0.5/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
stage=0
stop_stage=0
# hifigan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize.py \

@ -0,0 +1,52 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo 'speech synthesize !'
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \
--task_name=synthesize \
--wav_path=source/SSB03540307.wav\
--old_str='请播放歌曲小苹果。' \
--new_str='歌曲真好听。' \
--source_lang=zh \
--target_lang=zh \
--erniesat_config=${config_path} \
--phones_dict=dump/phone_id_map.txt \
--erniesat_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--erniesat_stat=dump/train/speech_stats.npy \
--voc=hifigan_aishell3 \
--voc_config=hifigan_aishell3_ckpt_0.2.0/default.yaml \
--voc_ckpt=hifigan_aishell3_ckpt_0.2.0/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_aishell3_ckpt_0.2.0/feats_stats.npy \
--output_name=exp/pred_gen.wav
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo 'speech edit !'
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \
--task_name=edit \
--wav_path=source/SSB03540428.wav \
--old_str='今天天气很好' \
--new_str='今天心情很好' \
--source_lang=zh \
--target_lang=zh \
--erniesat_config=${config_path} \
--phones_dict=dump/phone_id_map.txt \
--erniesat_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--erniesat_stat=dump/train/speech_stats.npy \
--voc=hifigan_aishell3 \
--voc_config=hifigan_aishell3_ckpt_0.2.0/default.yaml \
--voc_ckpt=hifigan_aishell3_ckpt_0.2.0/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_aishell3_ckpt_0.2.0/feats_stats.npy \
--output_name=exp/pred_edit.wav
fi

@ -8,5 +8,5 @@ python3 ${BIN_DIR}/train.py \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=2 \
--ngpu=8 \
--phones-dict=dump/phone_id_map.txt

@ -9,7 +9,7 @@ stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
ckpt_name=snapshot_iter_289500.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
@ -30,3 +30,7 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi

@ -1 +1,2 @@
# Mixed Chinese and English TTS with AISHELL3 and VCTK datasets
* ernie_sat - ERNIE-SAT

@ -1 +1,161 @@
# ERNIE SAT with AISHELL3 and VCTK dataset
# ERNIE-SAT with AISHELL3 and VCTK dataset
ERNIE-SAT 是可以同时处理中英文的跨语言的语音-语言跨模态大模型,其在语音编辑、个性化语音合成以及跨语言的语音合成等多个任务取得了领先效果。可以应用于语音编辑、个性化合成、语音克隆、同传翻译等一系列场景,该项目供研究使用。
## 模型框架
ERNIE-SAT 中我们提出了两项创新:
- 在预训练过程中将中英双语对应的音素作为输入,实现了跨语言、个性化的软音素映射
- 采用语言和语音的联合掩码学习实现了语言和语音的对齐
<p align="center">
<img src="https://user-images.githubusercontent.com/24568452/186110814-1b9c6618-a0ab-4c0c-bb3d-3d860b0e8cc2.png" />
</p>
## Dataset
### Download and Extract
Download all datasets and extract it to `~/datasets`:
- The aishell3 dataset is in the directory `~/datasets/data_aishell3`
- The vctk dataset is in the directory `~/datasets/VCTK-Corpus-0.92`
### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for the fastspeech2 training.
You can download from here:
- [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz)
- [vctk_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/VCTK-Corpus-0.92/vctk_alignment.tar.gz)
Or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo.
## Get Started
Assume the paths to the datasets are:
- `~/datasets/data_aishell3`
- `~/datasets/VCTK-Corpus-0.92`
Assume the path to the MFA results of the datasets are:
- `./aishell3_alignment_tone`
- `./vctk_alignment`
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
- synthesize waveform from text file.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── norm
├── raw
└── speech_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, speaker, and id of each utterance.
### Model Training
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
`./local/train.sh` calls `${BIN_DIR}/train.py`.
### Synthesizing
We use [HiFiGAN](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/voc5) as the neural vocoder.
Download pretrained HiFiGAN model from [hifigan_aishell3_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip) and unzip it.
```bash
unzip hifigan_aishell3_ckpt_0.2.0.zip
```
HiFiGAN checkpoint contains files listed below.
```text
hifigan_aishell3_ckpt_0.2.0
├── default.yaml # default config used to train HiFiGAN
├── feats_stats.npy # statistics used to normalize spectrogram when training HiFiGAN
└── snapshot_iter_2500000.pdz # generator parameters of HiFiGAN
```
`./local/synthesize.sh` calls `${BIN_DIR}/../synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
## Speech Synthesis and Speech Editing
### Prepare
**prepare aligner**
```bash
mkdir -p tools/aligner
cd tools
# download MFA
wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz
# extract MFA
tar xvf montreal-forced-aligner_linux.tar.gz
# fix .so of MFA
cd montreal-forced-aligner/lib
ln -snf libpython3.6m.so.1.0 libpython3.6m.so
cd -
# download align models and dicts
cd aligner
wget https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/aishell3_model.zip
wget https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/simple.lexicon
wget https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/vctk_model.zip
wget https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/cmudict-0.7b
cd ../../
```
**prepare pretrained FastSpeech2 models**
ERNIE-SAT use FastSpeech2 as phoneme duration predictor:
```bash
mkdir download
cd download
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_conformer_baker_ckpt_0.5.zip
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_ljspeech_ckpt_0.5.zip
unzip fastspeech2_conformer_baker_ckpt_0.5.zip
unzip fastspeech2_nosil_ljspeech_ckpt_0.5.zip
cd ../
```
**prepare source data**
```bash
mkdir source
cd source
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/SSB03540307.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/SSB03540428.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/LJ050-0278.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/p243_313.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/p299_096.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/this_was_not_the_show_for_me.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/README.md
cd ../
```
You can check the text of downloaded wavs in `source/README.md`.
### Cross Language Voice Cloning
```bash
./run.sh --stage 3 --stop-stage 3 --gpus 0
```
`stage 3` of `run.sh` calls `local/synthesize_e2e.sh`.
You can modify `--wav_path`、`--old_str` and `--new_str` yourself, `--old_str` should be the text corresponding to the audio of `--wav_path`, `--new_str` should be designed according to `--task_name`, `--source_lang` and `--target_lang` should be different in this example.
## Pretrained Model
Pretrained ErnieSAT model:
- [erniesat_aishell3_vctk_ckpt_1.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/erniesat_aishell3_vctk_ckpt_1.2.0.zip)
Model | Step | eval/text_mlm_loss | eval/mlm_loss | eval/loss
:-------------:| :------------:| :-----: | :-----:| :-----:
default| 8(gpu) x 489000|0.000001|52.477642 |52.477642

@ -1,3 +1,6 @@
# This configuration tested on 8 GPUs (A100) with 80GB GPU memory.
# It takes around 4 days to finish the training,You can adjust
# batch_size、num_workers here and ngpu in local/train.sh for your machine
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
@ -21,8 +24,8 @@ mlm_prob: 0.8
###########################################################
# DATA SETTING #
###########################################################
batch_size: 20
num_workers: 2
batch_size: 40
num_workers: 8
###########################################################
# MODEL SETTING #
@ -79,7 +82,7 @@ grad_clip: 1.0
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 700
max_epoch: 1500
num_snapshots: 50
###########################################################

@ -4,28 +4,11 @@ config_path=$1
train_output_path=$2
ckpt_name=$3
stage=1
stop_stage=1
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize.py \
--erniesat_config=${config_path} \
--erniesat_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--erniesat_stat=dump/train/speech_stats.npy \
--voc=pwgan_aishell3 \
--voc_config=pwg_aishell3_ckpt_0.5/default.yaml \
--voc_ckpt=pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \
--voc_stat=pwg_aishell3_ckpt_0.5/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
stage=0
stop_stage=0
# hifigan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize.py \

@ -0,0 +1,53 @@
# not ready yet
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo 'speech cross language from en to zh !'
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \
--task_name=synthesize \
--wav_path=source/p243_313.wav \
--old_str='For that reason cover should not be given.' \
--new_str='今天天气很好' \
--source_lang=en \
--target_lang=zh \
--erniesat_config=${config_path} \
--phones_dict=dump/phone_id_map.txt \
--erniesat_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--erniesat_stat=dump/train/speech_stats.npy \
--voc=hifigan_aishell3 \
--voc_config=hifigan_aishell3_ckpt_0.2.0/default.yaml \
--voc_ckpt=hifigan_aishell3_ckpt_0.2.0/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_aishell3_ckpt_0.2.0/feats_stats.npy \
--output_name=exp/pred_clone_en_zh.wav
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo 'speech cross language from zh to en !'
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \
--task_name=synthesize \
--wav_path=source/SSB03540307.wav \
--old_str='请播放歌曲小苹果。' \
--new_str="Thank you!" \
--source_lang=zh \
--target_lang=en \
--erniesat_config=${config_path} \
--phones_dict=dump/phone_id_map.txt \
--erniesat_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--erniesat_stat=dump/train/speech_stats.npy \
--voc=hifigan_aishell3 \
--voc_config=hifigan_aishell3_ckpt_0.2.0/default.yaml \
--voc_ckpt=hifigan_aishell3_ckpt_0.2.0/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_aishell3_ckpt_0.2.0/feats_stats.npy \
--output_name=exp/pred_clone_zh_en.wav
fi

@ -8,5 +8,5 @@ python3 ${BIN_DIR}/train.py \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=2 \
--ngpu=8 \
--phones-dict=dump/phone_id_map.txt

@ -9,7 +9,7 @@ stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
ckpt_name=snapshot_iter_489000.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
@ -30,3 +30,7 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi

@ -9,3 +9,4 @@
* voc1 - Parallel WaveGAN
* voc2 - MelGAN
* voc3 - MultiBand MelGAN
* ernie_sat - ERNIE-SAT

@ -1 +1,152 @@
# ERNIE SAT with VCTK dataset
# ERNIE-SAT with VCTK dataset
ERNIE-SAT 是可以同时处理中英文的跨语言的语音-语言跨模态大模型,其在语音编辑、个性化语音合成以及跨语言的语音合成等多个任务取得了领先效果。可以应用于语音编辑、个性化合成、语音克隆、同传翻译等一系列场景,该项目供研究使用。
## 模型框架
ERNIE-SAT 中我们提出了两项创新:
- 在预训练过程中将中英双语对应的音素作为输入,实现了跨语言、个性化的软音素映射
- 采用语言和语音的联合掩码学习实现了语言和语音的对齐
<p align="center">
<img src="https://user-images.githubusercontent.com/24568452/186110814-1b9c6618-a0ab-4c0c-bb3d-3d860b0e8cc2.png" />
</p>
## Dataset
### Download and Extract the dataset
Download VCTK-0.92 from it's [Official Website](https://datashare.ed.ac.uk/handle/10283/3443) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/VCTK-Corpus-0.92`.
### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for fastspeech2.
You can download from here [vctk_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/VCTK-Corpus-0.92/vctk_alignment.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
ps: we remove three speakers in VCTK-0.92 (see [reorganize_vctk.py](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/examples/other/mfa/local/reorganize_vctk.py)):
1. `p315`, because of no text for it.
2. `p280` and `p362`, because no *_mic2.flac (which is better than *_mic1.flac) for them.
## Get Started
Assume the path to the dataset is `~/datasets/VCTK-Corpus-0.92`.
Assume the path to the MFA result of VCTK is `./vctk_alignment`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
- synthesize waveform from text file.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── norm
├── raw
└── speech_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, speaker, and id of each utterance.
### Model Training
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
`./local/train.sh` calls `${BIN_DIR}/train.py`.
### Synthesizing
We use [HiFiGAN](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/voc5) as the neural vocoder.
Download pretrained HiFiGAN model from [hifigan_vctk_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_vctk_ckpt_0.2.0.zip) and unzip it.
```bash
unzip hifigan_vctk_ckpt_0.2.0.zip
```
HiFiGAN checkpoint contains files listed below.
```text
hifigan_vctk_ckpt_0.2.0
├── default.yaml # default config used to train HiFiGAN
├── feats_stats.npy # statistics used to normalize spectrogram when training HiFiGAN
└── snapshot_iter_2500000.pdz # generator parameters of HiFiGAN
```
`./local/synthesize.sh` calls `${BIN_DIR}/../synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
## Speech Synthesis and Speech Editing
### Prepare
**prepare aligner**
```bash
mkdir -p tools/aligner
cd tools
# download MFA
wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz
# extract MFA
tar xvf montreal-forced-aligner_linux.tar.gz
# fix .so of MFA
cd montreal-forced-aligner/lib
ln -snf libpython3.6m.so.1.0 libpython3.6m.so
cd -
# download align models and dicts
cd aligner
wget https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/aishell3_model.zip
wget https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/simple.lexicon
wget https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/vctk_model.zip
wget https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/cmudict-0.7b
cd ../../
```
**prepare pretrained FastSpeech2 models**
ERNIE-SAT use FastSpeech2 as phoneme duration predictor:
```bash
mkdir download
cd download
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_conformer_baker_ckpt_0.5.zip
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_ljspeech_ckpt_0.5.zip
unzip fastspeech2_conformer_baker_ckpt_0.5.zip
unzip fastspeech2_nosil_ljspeech_ckpt_0.5.zip
cd ../
```
**prepare source data**
```bash
mkdir source
cd source
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/SSB03540307.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/SSB03540428.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/LJ050-0278.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/p243_313.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/p299_096.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/this_was_not_the_show_for_me.wav
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/source/README.md
cd ../
```
You can check the text of downloaded wavs in `source/README.md`.
### Speech Synthesis and Speech Editing
```bash
./run.sh --stage 3 --stop-stage 3 --gpus 0
```
`stage 3` of `run.sh` calls `local/synthesize_e2e.sh`, `stage 0` of it is **Speech Synthesis** and `stage 1` of it is **Speech Editing**.
You can modify `--wav_path`、`--old_str` and `--new_str` yourself, `--old_str` should be the text corresponding to the audio of `--wav_path`, `--new_str` should be designed according to `--task_name`, both `--source_lang` and `--target_lang` should be `en` for model trained with VCTK dataset.
## Pretrained Model
Pretrained ErnieSAT model:
- [erniesat_vctk_ckpt_1.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ernie_sat/erniesat_vctk_ckpt_1.2.0.zip)
Model | Step | eval/mlm_loss | eval/loss
:-------------:| :------------:| :-----: | :-----:
default| 8(gpu) x 199500|57.622215|57.622215

@ -1,3 +1,6 @@
# This configuration tested on 8 GPUs (A100) with 80GB GPU memory.
# It takes around 2 days to finish the training,You can adjust
# batch_size、num_workers here and ngpu in local/train.sh for your machine
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
@ -21,8 +24,8 @@ mlm_prob: 0.8
###########################################################
# DATA SETTING #
###########################################################
batch_size: 20
num_workers: 2
batch_size: 40
num_workers: 8
###########################################################
# MODEL SETTING #

@ -4,31 +4,11 @@ config_path=$1
train_output_path=$2
ckpt_name=$3
stage=1
stop_stage=1
# use am to predict duration here
# 增加 am_phones_dict am_tones_dict 等,也可以用新的方式构造 am, 不需要这么多参数了就
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize.py \
--erniesat_config=${config_path} \
--erniesat_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--erniesat_stat=dump/train/speech_stats.npy \
--voc=pwgan_vctk \
--voc_config=pwg_vctk_ckpt_0.1.1/default.yaml \
--voc_ckpt=pwg_vctk_ckpt_0.1.1/snapshot_iter_1500000.pdz \
--voc_stat=pwg_vctk_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
stage=0
stop_stage=0
# hifigan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize.py \

@ -0,0 +1,52 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo 'speech synthesize !'
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \
--task_name=synthesize \
--wav_path=source/p243_313.wav \
--old_str='For that reason cover should not be given.' \
--new_str='I love you very much do you love me' \
--source_lang=en \
--target_lang=en \
--erniesat_config=${config_path} \
--phones_dict=dump/phone_id_map.txt \
--erniesat_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--erniesat_stat=dump/train/speech_stats.npy \
--voc=hifigan_vctk \
--voc_config=hifigan_vctk_ckpt_0.2.0/default.yaml \
--voc_ckpt=hifigan_vctk_ckpt_0.2.0/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_vctk_ckpt_0.2.0/feats_stats.npy \
--output_name=exp/pred_gen.wav
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo 'speech edit !'
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \
--task_name=edit \
--wav_path=source/p243_313.wav \
--old_str='For that reason cover should not be given.' \
--new_str='For that reason cover is not impossible to be given.' \
--source_lang=en \
--target_lang=en \
--erniesat_config=${config_path} \
--phones_dict=dump/phone_id_map.txt \
--erniesat_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--erniesat_stat=dump/train/speech_stats.npy \
--voc=hifigan_vctk \
--voc_config=hifigan_vctk_ckpt_0.2.0/default.yaml \
--voc_ckpt=hifigan_vctk_ckpt_0.2.0/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_vctk_ckpt_0.2.0/feats_stats.npy \
--output_name=exp/pred_edit.wav
fi

@ -8,5 +8,5 @@ python3 ${BIN_DIR}/train.py \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=2 \
--ngpu=8 \
--phones-dict=dump/phone_id_map.txt

@ -9,7 +9,7 @@ stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
ckpt_name=snapshot_iter_199500.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
@ -30,3 +30,7 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi

@ -19,9 +19,9 @@ import librosa
import numpy as np
import pypinyin
from praatio import textgrid
from paddlespeech.t2s.exps.ernie_sat.utils import get_tmp_name
from paddlespeech.t2s.exps.ernie_sat.utils import get_dict
from paddlespeech.t2s.exps.ernie_sat.utils import get_dict
from paddlespeech.t2s.exps.ernie_sat.utils import get_tmp_name
DICT_EN = 'tools/aligner/cmudict-0.7b'
DICT_ZH = 'tools/aligner/simple.lexicon'
@ -30,6 +30,7 @@ MODEL_DIR_ZH = 'tools/aligner/aishell3_model.zip'
MFA_PATH = 'tools/montreal-forced-aligner/bin'
os.environ['PATH'] = MFA_PATH + '/:' + os.environ['PATH']
def _get_max_idx(dic):
return sorted([int(key.split('_')[0]) for key in dic.keys()])[-1]
@ -340,7 +341,7 @@ def get_phns_spans(wav_path: str,
if __name__ == '__main__':
text = "For that reason cover should not be given."
phn, dur, word2phns = alignment("exp/p243_313.wav", text, lang='en')
phn, dur, word2phns = alignment("source/p243_313.wav", text, lang='en')
print(phn, dur)
print(word2phns)
print("---------------------------------")
@ -352,7 +353,7 @@ if __name__ == '__main__':
style=pypinyin.Style.TONE3,
tone_sandhi=True)
text_zh = " ".join(text_zh)
phn, dur, word2phns = alignment("exp/000001.wav", text_zh, lang='zh')
phn, dur, word2phns = alignment("source/000001.wav", text_zh, lang='zh')
print(phn, dur)
print(word2phns)
print("---------------------------------")
@ -367,7 +368,7 @@ if __name__ == '__main__':
print("---------------------------------")
outs = get_phns_spans(
wav_path="exp/p243_313.wav",
wav_path="source/p243_313.wav",
old_str="For that reason cover should not be given.",
new_str="for that reason cover is impossible to be given.")

@ -11,35 +11,41 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from pathlib import Path
from typing import List
import librosa
import numpy as np
import paddle
import pypinyin
import soundfile as sf
import yaml
from pypinyin_dict.phrase_pinyin_data import large_pinyin
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.am_batch_fn import build_erniesat_collate_fn
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.exps.ernie_sat.align import get_phns_spans
from paddlespeech.t2s.exps.ernie_sat.utils import eval_durs
from paddlespeech.t2s.exps.ernie_sat.utils import get_dur_adj_factor
from paddlespeech.t2s.exps.ernie_sat.utils import get_span_bdy
from paddlespeech.t2s.datasets.am_batch_fn import build_erniesat_collate_fn
from paddlespeech.t2s.exps.syn_utils import get_frontend
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.exps.syn_utils import norm
from paddlespeech.t2s.exps.ernie_sat.utils import get_tmp_name
from paddlespeech.t2s.exps.syn_utils import get_am_inference
from paddlespeech.t2s.exps.syn_utils import get_voc_inference
from paddlespeech.t2s.exps.syn_utils import norm
from paddlespeech.t2s.utils import str2bool
large_pinyin.load()
def _p2id(self, phonemes: List[str]) -> np.ndarray:
def _p2id(phonemes: List[str]) -> np.ndarray:
# replace unk phone with sp
phonemes = [
phn if phn in vocab_phones else "sp" for phn in phonemes
]
phonemes = [phn if phn in vocab_phones else "sp" for phn in phonemes]
phone_ids = [vocab_phones[item] for item in phonemes]
return np.array(phone_ids, np.int64)
def prep_feats_with_dur(wav_path: str,
old_str: str='',
new_str: str='',
@ -67,12 +73,12 @@ def prep_feats_with_dur(wav_path: str,
fs=fs,
n_shift=n_shift)
mfa_start = phns_spans_outs["mfa_start"]
mfa_end = phns_spans_outs["mfa_end"]
old_phns = phns_spans_outs["old_phns"]
new_phns = phns_spans_outs["new_phns"]
span_to_repl = phns_spans_outs["span_to_repl"]
span_to_add = phns_spans_outs["span_to_add"]
mfa_start = phns_spans_outs['mfa_start']
mfa_end = phns_spans_outs['mfa_end']
old_phns = phns_spans_outs['old_phns']
new_phns = phns_spans_outs['new_phns']
span_to_repl = phns_spans_outs['span_to_repl']
span_to_add = phns_spans_outs['span_to_add']
# 中文的 phns 不一定都在 fastspeech2 的字典里, 用 sp 代替
if target_lang in {'en', 'zh'}:
@ -132,7 +138,7 @@ def prep_feats_with_dur(wav_path: str,
[wav_org[:wav_left_idx], blank_wav, wav_org[wav_right_idx:]])
# 音频是正常遮住了
sf.write(str("new_wav.wav"), new_wav, samplerate=fs)
sf.write(str("mask_wav.wav"), new_wav, samplerate=fs)
# 4. get old and new mel span to be mask
old_span_bdy = get_span_bdy(
@ -152,8 +158,6 @@ def prep_feats_with_dur(wav_path: str,
return outs
def prep_feats(wav_path: str,
old_str: str='',
new_str: str='',
@ -163,7 +167,7 @@ def prep_feats(wav_path: str,
fs: int=24000,
n_shift: int=300):
outs = prep_feats_with_dur(
with_dur_outs = prep_feats_with_dur(
wav_path=wav_path,
old_str=old_str,
new_str=new_str,
@ -176,15 +180,14 @@ def prep_feats(wav_path: str,
wav_name = os.path.basename(wav_path)
utt_id = wav_name.split('.')[0]
wav = outs['new_wav']
phns = outs['new_phns']
mfa_start = outs['new_mfa_start']
mfa_end = outs['new_mfa_end']
old_span_bdy = outs['old_span_bdy']
new_span_bdy = outs['new_span_bdy']
wav = with_dur_outs['new_wav']
phns = with_dur_outs['new_phns']
mfa_start = with_dur_outs['new_mfa_start']
mfa_end = with_dur_outs['new_mfa_end']
old_span_bdy = with_dur_outs['old_span_bdy']
new_span_bdy = with_dur_outs['new_span_bdy']
span_bdy = np.array(new_span_bdy)
text = _p2id(phns)
mel = mel_extractor.get_log_mel_fbank(wav)
erniesat_mean, erniesat_std = np.load(erniesat_stat)
normed_mel = norm(mel, erniesat_mean, erniesat_std)
@ -192,122 +195,225 @@ def prep_feats(wav_path: str,
tmpbase = './tmp_dir/' + tmp_name
tmpbase = Path(tmpbase)
tmpbase.mkdir(parents=True, exist_ok=True)
print("tmp_name in synthesize_e2e:",tmp_name)
mel_path = tmpbase / 'mel.npy'
print("mel_path:",mel_path)
np.save(mel_path, logmel)
np.save(mel_path, normed_mel)
durations = [e - s for e, s in zip(mfa_end, mfa_start)]
text = _p2id(phns)
datum = {
"utt_id": utt_id,
"spk_id": 0,
"text": text,
"text_lengths": len(text),
"speech_lengths": 115,
"speech_lengths": len(normed_mel),
"durations": durations,
"speech": mel_path,
"speech": np.load(mel_path),
"align_start": mfa_start,
"align_end": mfa_end,
"span_bdy": span_bdy
}
batch = collate_fn([datum])
print("batch:",batch)
return batch, old_span_bdy, new_span_bdy
outs = dict()
outs['batch'] = batch
outs['old_span_bdy'] = old_span_bdy
outs['new_span_bdy'] = new_span_bdy
return outs
def decode_with_model(mlm_model: nn.Layer,
collate_fn,
wav_path: str,
def get_mlm_output(wav_path: str,
old_str: str='',
new_str: str='',
source_lang: str='en',
target_lang: str='en',
use_teacher_forcing: bool=False,
duration_adjust: bool=True,
fs: int=24000,
n_shift: int=300,
token_list: List[str]=[]):
batch, old_span_bdy, new_span_bdy = prep_feats(
source_lang=source_lang,
target_lang=target_lang,
n_shift: int=300):
prep_feats_outs = prep_feats(
wav_path=wav_path,
old_str=old_str,
new_str=new_str,
source_lang=source_lang,
target_lang=target_lang,
duration_adjust=duration_adjust,
fs=fs,
n_shift=n_shift,
token_list=token_list)
feats = collate_fn(batch)[1]
n_shift=n_shift)
if 'text_masked_pos' in feats.keys():
feats.pop('text_masked_pos')
batch = prep_feats_outs['batch']
new_span_bdy = prep_feats_outs['new_span_bdy']
old_span_bdy = prep_feats_outs['old_span_bdy']
output = mlm_model.inference(
text=feats['text'],
speech=feats['speech'],
masked_pos=feats['masked_pos'],
speech_mask=feats['speech_mask'],
text_mask=feats['text_mask'],
speech_seg_pos=feats['speech_seg_pos'],
text_seg_pos=feats['text_seg_pos'],
span_bdy=new_span_bdy,
use_teacher_forcing=use_teacher_forcing)
out_mels = erniesat_inference(
speech=batch['speech'],
text=batch['text'],
masked_pos=batch['masked_pos'],
speech_mask=batch['speech_mask'],
text_mask=batch['text_mask'],
speech_seg_pos=batch['speech_seg_pos'],
text_seg_pos=batch['text_seg_pos'],
span_bdy=new_span_bdy)
# 拼接音频
output_feat = paddle.concat(x=output, axis=0)
output_feat = paddle.concat(x=out_mels, axis=0)
wav_org, _ = librosa.load(wav_path, sr=fs)
return wav_org, output_feat, old_span_bdy, new_span_bdy, fs, hop_length
outs = dict()
outs['wav_org'] = wav_org
outs['output_feat'] = output_feat
outs['old_span_bdy'] = old_span_bdy
outs['new_span_bdy'] = new_span_bdy
return outs
if __name__ == '__main__':
fs = 24000
n_shift = 300
wav_path = "exp/p243_313.wav"
old_str = "For that reason cover should not be given."
# for edit
# new_str = "for that reason cover is impossible to be given."
# for synthesize
append_str = "do you love me i love you so much"
new_str = old_str + append_str
'''
outs = prep_feats_with_dur(
def get_wav(wav_path: str,
source_lang: str='en',
target_lang: str='en',
old_str: str='',
new_str: str='',
duration_adjust: bool=True,
fs: int=24000,
n_shift: int=300):
outs = get_mlm_output(
wav_path=wav_path,
old_str=old_str,
new_str=new_str,
source_lang=source_lang,
target_lang=target_lang,
duration_adjust=duration_adjust,
fs=fs,
n_shift=n_shift)
new_wav = outs['new_wav']
new_phns = outs['new_phns']
new_mfa_start = outs['new_mfa_start']
new_mfa_end = outs['new_mfa_end']
wav_org = outs['wav_org']
output_feat = outs['output_feat']
old_span_bdy = outs['old_span_bdy']
new_span_bdy = outs['new_span_bdy']
print("---------------------------------")
masked_feat = output_feat[new_span_bdy[0]:new_span_bdy[1]]
with paddle.no_grad():
alt_wav = voc_inference(masked_feat)
alt_wav = np.squeeze(alt_wav)
old_time_bdy = [n_shift * x for x in old_span_bdy]
wav_replaced = np.concatenate(
[wav_org[:old_time_bdy[0]], alt_wav, wav_org[old_time_bdy[1]:]])
wav_dict = {"origin": wav_org, "output": wav_replaced}
return wav_dict
def parse_args():
# parse args and config
parser = argparse.ArgumentParser(
description="Synthesize with acoustic model & vocoder")
# ernie sat
parser.add_argument(
'--erniesat_config',
type=str,
default=None,
help='Config of acoustic model.')
parser.add_argument(
'--erniesat_ckpt',
type=str,
default=None,
help='Checkpoint file of acoustic model.')
parser.add_argument(
"--erniesat_stat",
type=str,
default=None,
help="mean and standard deviation used to normalize spectrogram when training acoustic model."
)
parser.add_argument(
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
# vocoder
parser.add_argument(
'--voc',
type=str,
default='pwgan_csmsc',
choices=[
'pwgan_aishell3',
'pwgan_vctk',
'hifigan_aishell3',
'hifigan_vctk',
],
help='Choose vocoder type of tts task.')
parser.add_argument(
'--voc_config', type=str, default=None, help='Config of voc.')
parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument(
"--voc_stat",
type=str,
default=None,
help="mean and standard deviation used to normalize spectrogram when training voc."
)
# other
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
# ernie sat related
parser.add_argument("--task_name", type=str, help="task name")
parser.add_argument("--wav_path", type=str, help="path of old wav")
parser.add_argument("--old_str", type=str, help="old string")
parser.add_argument("--new_str", type=str, help="new string")
parser.add_argument(
"--source_lang", type=str, default="en", help="source language")
parser.add_argument(
"--target_lang", type=str, default="en", help="target language")
parser.add_argument(
"--duration_adjust",
type=str2bool,
default=True,
help="whether to adjust duration.")
parser.add_argument("--output_name", type=str, default="output.wav")
args = parser.parse_args()
return args
print("new_wav:", new_wav)
print("new_phns:", new_phns)
print("new_mfa_start:", new_mfa_start)
print("new_mfa_end:", new_mfa_end)
print("old_span_bdy:", old_span_bdy)
print("new_span_bdy:", new_span_bdy)
print("---------------------------------")
'''
erniesat_config = "/home/yuantian01/PaddleSpeech_ERNIE_SAT/PaddleSpeech/examples/vctk/ernie_sat/local/default.yaml"
if __name__ == '__main__':
args = parse_args()
if args.ngpu == 0:
paddle.set_device("cpu")
elif args.ngpu > 0:
paddle.set_device("gpu")
else:
print("ngpu should >= 0 !")
with open(erniesat_config) as f:
# evaluate(args)
with open(args.erniesat_config) as f:
erniesat_config = CfgNode(yaml.safe_load(f))
erniesat_stat = "/home/yuantian01/PaddleSpeech_ERNIE_SAT/PaddleSpeech/examples/vctk/ernie_sat/dump/train/speech_stats.npy"
old_str = args.old_str
new_str = args.new_str
# convert Chinese characters to pinyin
if args.source_lang == 'zh':
old_str = pypinyin.lazy_pinyin(
old_str,
neutral_tone_with_five=True,
style=pypinyin.Style.TONE3,
tone_sandhi=True)
old_str = ' '.join(old_str)
if args.target_lang == 'zh':
new_str = pypinyin.lazy_pinyin(
new_str,
neutral_tone_with_five=True,
style=pypinyin.Style.TONE3,
tone_sandhi=True)
new_str = ' '.join(new_str)
if args.task_name == 'edit':
new_str = new_str
elif args.task_name == 'synthesize':
new_str = old_str + new_str
else:
new_str = old_str + new_str
print("new_str:", new_str)
# Extractor
mel_extractor = LogMelFBank(
@ -320,27 +426,50 @@ if __name__ == '__main__':
fmin=erniesat_config.fmin,
fmax=erniesat_config.fmax)
collate_fn = build_erniesat_collate_fn(
mlm_prob=erniesat_config.mlm_prob,
mean_phn_span=erniesat_config.mean_phn_span,
seg_emb=erniesat_config.model['enc_input_layer'] == 'sega_mlm',
text_masking=False)
phones_dict='/home/yuantian01/PaddleSpeech_ERNIE_SAT/PaddleSpeech/examples/vctk/ernie_sat/dump/phone_id_map.txt'
vocab_phones = {}
with open(phones_dict, 'rt') as f:
with open(args.phones_dict, 'rt') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
vocab_phones[phn] = int(id)
prep_feats(wav_path=wav_path,
# ernie sat model
erniesat_inference = get_am_inference(
am='erniesat_dataset',
am_config=erniesat_config,
am_ckpt=args.erniesat_ckpt,
am_stat=args.erniesat_stat,
phones_dict=args.phones_dict)
with open(args.voc_config) as f:
voc_config = CfgNode(yaml.safe_load(f))
# vocoder
voc_inference = get_voc_inference(
voc=args.voc,
voc_config=voc_config,
voc_ckpt=args.voc_ckpt,
voc_stat=args.voc_stat)
erniesat_stat = args.erniesat_stat
wav_dict = get_wav(
wav_path=args.wav_path,
source_lang=args.source_lang,
target_lang=args.target_lang,
old_str=old_str,
new_str=new_str,
fs=fs,
n_shift=n_shift)
duration_adjust=args.duration_adjust,
fs=erniesat_config.fs,
n_shift=erniesat_config.n_shift)
sf.write(
args.output_name, wav_dict['output'], samplerate=erniesat_config.fs)
print(
f"\033[1;32;m Generated audio saved into {args.output_name} ! \033[0m")

@ -82,6 +82,10 @@ def denorm(data, mean, std):
return data * std + mean
def norm(data, mean, std):
return (data - mean) / std
def get_chunks(data, block_size: int, pad_size: int):
data_len = data.shape[1]
chunks = []

@ -389,7 +389,7 @@ class MLM(nn.Layer):
speech_seg_pos: paddle.Tensor,
text_seg_pos: paddle.Tensor,
span_bdy: List[int],
use_teacher_forcing: bool=False, ) -> List[paddle.Tensor]:
use_teacher_forcing: bool=True, ) -> List[paddle.Tensor]:
'''
Args:
speech (paddle.Tensor): input speech (1, Tmax, D).
@ -657,7 +657,7 @@ class ErnieSAT(nn.Layer):
speech_seg_pos: paddle.Tensor,
text_seg_pos: paddle.Tensor,
span_bdy: List[int],
use_teacher_forcing: bool=False, ) -> Dict[str, paddle.Tensor]:
use_teacher_forcing: bool=True, ) -> Dict[str, paddle.Tensor]:
return self.model.inference(
speech=speech,
text=text,

Loading…
Cancel
Save