add nnet_decoder_chunk opt

pull/2014/head
Yang Zhou 3 years ago
parent eea56a4af2
commit bbcb1ea297

@ -45,6 +45,7 @@ DEFINE_string(model_cache_names,
"chunk_state_h_box,chunk_state_c_box",
"model cache names");
DEFINE_string(model_cache_shapes, "5-1-1024,5-1-1024", "model cache shapes");
DEFINE_int32(nnet_decoder_chunk, 1, "paddle nnet forward chunk");
using kaldi::BaseFloat;
using kaldi::Matrix;
@ -90,8 +91,9 @@ int main(int argc, char* argv[]) {
std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data));
int32 chunk_size = FLAGS_receptive_field_length;
int32 chunk_stride = FLAGS_downsampling_rate;
int32 chunk_size = FLAGS_receptive_field_length
+ (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate;
int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk;
int32 receptive_field_length = FLAGS_receptive_field_length;
LOG(INFO) << "chunk size (frame): " << chunk_size;
LOG(INFO) << "chunk stride (frame): " << chunk_stride;

@ -32,7 +32,7 @@ DEFINE_int32(receptive_field_length,
DEFINE_int32(downsampling_rate,
4,
"two CNN(kernel=5) module downsampling rate.");
DEFINE_int32(nnet_decoder_chunk, 1, "paddle nnet forward chunk");
// nnet
DEFINE_string(model_path, "avg_1.jit.pdmodel", "paddle nnet model");
DEFINE_string(param_path, "avg_1.jit.pdiparams", "paddle nnet model param");
@ -79,8 +79,10 @@ FeaturePipelineOptions InitFeaturePipelineOptions() {
frame_opts.preemph_coeff = 0.0;
opts.linear_spectrogram_opts.frame_opts = frame_opts;
}
opts.assembler_opts.frame_chunk_size = FLAGS_receptive_field_length;
opts.assembler_opts.frame_chunk_stride = FLAGS_downsampling_rate;
opts.assembler_opts.subsampling_rate = FLAGS_downsampling_rate;
opts.assembler_opts.receptive_filed_length = FLAGS_receptive_field_length;
opts.assembler_opts.nnet_decoder_chunk = FLAGS_nnet_decoder_chunk;
return opts;
}

@ -28,9 +28,9 @@ DEFINE_string(model_path, "avg_1.jit.pdmodel", "paddle nnet model");
DEFINE_string(param_path, "avg_1.jit.pdiparams", "paddle nnet model param");
DEFINE_string(word_symbol_table, "words.txt", "word symbol table");
DEFINE_string(graph_path, "TLG", "decoder graph");
DEFINE_double(acoustic_scale, 1.0, "acoustic scale");
DEFINE_int32(max_active, 7500, "decoder graph");
DEFINE_int32(nnet_decoder_chunk, 1, "paddle nnet forward chunk");
DEFINE_int32(receptive_field_length,
7,
"receptive field of two CNN(kernel=5) downsampling module.");
@ -93,8 +93,9 @@ int main(int argc, char* argv[]) {
std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data, FLAGS_acoustic_scale));
int32 chunk_size = FLAGS_receptive_field_length;
int32 chunk_stride = FLAGS_downsampling_rate;
int32 chunk_size = FLAGS_receptive_field_length
+ (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate;
int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk;
int32 receptive_field_length = FLAGS_receptive_field_length;
LOG(INFO) << "chunk size (frame): " << chunk_size;
LOG(INFO) << "chunk stride (frame): " << chunk_stride;

@ -23,8 +23,9 @@ using std::unique_ptr;
Assembler::Assembler(AssemblerOptions opts,
unique_ptr<FrontendInterface> base_extractor) {
frame_chunk_stride_ = opts.frame_chunk_stride;
frame_chunk_size_ = opts.frame_chunk_size;
frame_chunk_stride_ = opts.subsampling_rate * opts.nnet_decoder_chunk;
frame_chunk_size_ = (opts.nnet_decoder_chunk - 1) * opts.subsampling_rate + opts.receptive_filed_length;
receptive_filed_length_ = opts.receptive_filed_length;
base_extractor_ = std::move(base_extractor);
dim_ = base_extractor_->Dim();
}
@ -48,7 +49,19 @@ bool Assembler::Compute(Vector<BaseFloat>* feats) {
while (feature_cache_.size() < frame_chunk_size_) {
Vector<BaseFloat> feature;
result = base_extractor_->Read(&feature);
if (result == false || feature.Dim() == 0) return false;
if (result == false || feature.Dim() == 0) {
if (IsFinished() == false) return false;
break;
}
feature_cache_.push(feature);
}
if (feature_cache_.size() < receptive_filed_length_) {
return false;
}
while (feature_cache_.size() < frame_chunk_size_) {
Vector<BaseFloat> feature(dim_, kaldi::kSetZero);
feature_cache_.push(feature);
}

@ -20,12 +20,16 @@
namespace ppspeech {
struct AssemblerOptions {
int32 frame_chunk_size;
int32 frame_chunk_stride;
// refer:https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/paddlespeech/s2t/exps/deepspeech2/model.py
// the nnet batch forward
int32 receptive_filed_length;
int32 subsampling_rate;
int32 nnet_decoder_chunk;
AssemblerOptions()
: frame_chunk_size(1),
frame_chunk_stride(1) {}
: receptive_filed_length(1),
subsampling_rate(1),
nnet_decoder_chunk(1) {}
};
class Assembler : public FrontendInterface {
@ -59,6 +63,7 @@ class Assembler : public FrontendInterface {
int32 dim_;
int32 frame_chunk_size_; // window
int32 frame_chunk_stride_; // stride
int32 receptive_filed_length_;
std::queue<kaldi::Vector<kaldi::BaseFloat>> feature_cache_;
std::unique_ptr<FrontendInterface> base_extractor_;
DISALLOW_COPY_AND_ASSIGN(Assembler);

@ -5,3 +5,10 @@ add_library(nnet STATIC
paddle_nnet.cc
)
target_link_libraries(nnet absl::strings)
set(bin_name nnet_forward_main)
add_executable(${bin_name} ${CMAKE_CURRENT_SOURCE_DIR}/${bin_name}.cc)
target_include_directories(${bin_name} PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(${bin_name} utils kaldi-util kaldi-matrix gflags glog nnet ${DEPS})

@ -0,0 +1,162 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "base/flags.h"
#include "base/log.h"
#include "frontend/audio/data_cache.h"
#include "frontend/audio/assembler.h"
#include "kaldi/util/table-types.h"
#include "nnet/decodable.h"
#include "nnet/paddle_nnet.h"
DEFINE_string(feature_rspecifier, "", "test feature rspecifier");
DEFINE_string(nnet_prob_wspecifier, "", "nnet porb wspecifier");
DEFINE_string(model_path, "avg_1.jit.pdmodel", "paddle nnet model");
DEFINE_string(param_path, "avg_1.jit.pdiparams", "paddle nnet model param");
DEFINE_int32(nnet_decoder_chunk, 1, "paddle nnet forward chunk");
DEFINE_int32(receptive_field_length,
7,
"receptive field of two CNN(kernel=5) downsampling module.");
DEFINE_int32(downsampling_rate,
4,
"two CNN(kernel=5) module downsampling rate.");
DEFINE_string(
model_input_names,
"audio_chunk,audio_chunk_lens,chunk_state_h_box,chunk_state_c_box",
"model input names");
DEFINE_string(model_output_names,
"softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0",
"model output names");
DEFINE_string(model_cache_names,
"chunk_state_h_box,chunk_state_c_box",
"model cache names");
DEFINE_string(model_cache_shapes, "5-1-1024,5-1-1024", "model cache shapes");
DEFINE_double(acoustic_scale, 1.0, "acoustic scale");
using kaldi::BaseFloat;
using kaldi::Matrix;
using std::vector;
int main(int argc, char* argv[]) {
gflags::ParseCommandLineFlags(&argc, &argv, false);
google::InitGoogleLogging(argv[0]);
kaldi::SequentialBaseFloatMatrixReader feature_reader(
FLAGS_feature_rspecifier);
kaldi::BaseFloatMatrixWriter nnet_writer(FLAGS_nnet_prob_wspecifier);
std::string model_graph = FLAGS_model_path;
std::string model_params = FLAGS_param_path;
LOG(INFO) << "model path: " << model_graph;
LOG(INFO) << "model param: " << model_params;
int32 num_done = 0, num_err = 0;
ppspeech::ModelOptions model_opts;
model_opts.model_path = model_graph;
model_opts.param_path = model_params;
model_opts.cache_names = FLAGS_model_cache_names;
model_opts.cache_shape = FLAGS_model_cache_shapes;
model_opts.input_names = FLAGS_model_input_names;
model_opts.output_names = FLAGS_model_output_names;
std::shared_ptr<ppspeech::PaddleNnet> nnet(
new ppspeech::PaddleNnet(model_opts));
std::shared_ptr<ppspeech::DataCache> raw_data(new ppspeech::DataCache());
std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data, FLAGS_acoustic_scale));
int32 chunk_size = FLAGS_receptive_field_length
+ (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate;
int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk;
int32 receptive_field_length = FLAGS_receptive_field_length;
LOG(INFO) << "chunk size (frame): " << chunk_size;
LOG(INFO) << "chunk stride (frame): " << chunk_stride;
LOG(INFO) << "receptive field (frame): " << receptive_field_length;
kaldi::Timer timer;
for (; !feature_reader.Done(); feature_reader.Next()) {
string utt = feature_reader.Key();
kaldi::Matrix<BaseFloat> feature = feature_reader.Value();
raw_data->SetDim(feature.NumCols());
LOG(INFO) << "process utt: " << utt;
LOG(INFO) << "rows: " << feature.NumRows();
LOG(INFO) << "cols: " << feature.NumCols();
int32 row_idx = 0;
int32 padding_len = 0;
int32 ori_feature_len = feature.NumRows();
if ((feature.NumRows() - chunk_size) % chunk_stride != 0) {
padding_len =
chunk_stride - (feature.NumRows() - chunk_size) % chunk_stride;
feature.Resize(feature.NumRows() + padding_len,
feature.NumCols(),
kaldi::kCopyData);
}
int32 num_chunks = (feature.NumRows() - chunk_size) / chunk_stride + 1;
int32 frame_idx = 0;
std::vector<kaldi::Vector<kaldi::BaseFloat>> prob_vec;
for (int chunk_idx = 0; chunk_idx < num_chunks; ++chunk_idx) {
kaldi::Vector<kaldi::BaseFloat> feature_chunk(chunk_size *
feature.NumCols());
int32 feature_chunk_size = 0;
if (ori_feature_len > chunk_idx * chunk_stride) {
feature_chunk_size = std::min(
ori_feature_len - chunk_idx * chunk_stride, chunk_size);
}
if (feature_chunk_size < receptive_field_length) break;
int32 start = chunk_idx * chunk_stride;
for (int row_id = 0; row_id < chunk_size; ++row_id) {
kaldi::SubVector<kaldi::BaseFloat> tmp(feature, start);
kaldi::SubVector<kaldi::BaseFloat> f_chunk_tmp(
feature_chunk.Data() + row_id * feature.NumCols(),
feature.NumCols());
f_chunk_tmp.CopyFromVec(tmp);
++start;
}
raw_data->Accept(feature_chunk);
if (chunk_idx == num_chunks - 1) {
raw_data->SetFinished();
}
vector<kaldi::BaseFloat> prob;
while (decodable->FrameLikelihood(frame_idx, &prob)) {
kaldi::Vector<kaldi::BaseFloat> vec_tmp(prob.size());
std::memcpy(vec_tmp.Data(), prob.data(), sizeof(kaldi::BaseFloat)*prob.size());
prob_vec.push_back(vec_tmp);
frame_idx++;
}
}
decodable->Reset();
if (prob_vec.size() == 0) {
// the TokenWriter can not write empty string.
++num_err;
KALDI_LOG << " the nnet prob of " << utt << " is empty";
continue;
}
kaldi::Matrix<kaldi::BaseFloat> result(prob_vec.size(),prob_vec[0].Dim());
for (int32 row_idx = 0; row_idx < prob_vec.size(); ++row_idx) {
for (int32 col_idx = 0; col_idx < prob_vec[0].Dim(); ++col_idx) {
result(row_idx, col_idx) = prob_vec[row_idx](col_idx);
}
}
nnet_writer.Write(utt, result);
++num_done;
}
double elapsed = timer.Elapsed();
KALDI_LOG << " cost:" << elapsed << " s";
KALDI_LOG << "Done " << num_done << " utterances, " << num_err
<< " with errors.";
return (num_done != 0 ? 0 : 1);
}
Loading…
Cancel
Save