parent
980944dab1
commit
ba978fca98
@ -0,0 +1,185 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import soundfile as sf
|
||||
import yaml
|
||||
from paddle import jit
|
||||
from paddle.static import InputSpec
|
||||
from yacs.config import CfgNode
|
||||
|
||||
from parakeet.frontend.zh_frontend import Frontend
|
||||
from parakeet.models.fastspeech2 import FastSpeech2
|
||||
from parakeet.models.fastspeech2 import FastSpeech2Inference
|
||||
from parakeet.models.melgan import MelGANGenerator
|
||||
from parakeet.models.melgan import MelGANInference
|
||||
from parakeet.modules.normalizer import ZScore
|
||||
|
||||
|
||||
def evaluate(args, fastspeech2_config, melgan_config):
|
||||
# dataloader has been too verbose
|
||||
logging.getLogger("DataLoader").disabled = True
|
||||
|
||||
# construct dataset for evaluation
|
||||
sentences = []
|
||||
with open(args.text, 'rt') as f:
|
||||
for line in f:
|
||||
utt_id, sentence = line.strip().split()
|
||||
sentences.append((utt_id, sentence))
|
||||
|
||||
with open(args.phones_dict, "r") as f:
|
||||
phn_id = [line.strip().split() for line in f.readlines()]
|
||||
vocab_size = len(phn_id)
|
||||
print("vocab_size:", vocab_size)
|
||||
odim = fastspeech2_config.n_mels
|
||||
model = FastSpeech2(
|
||||
idim=vocab_size, odim=odim, **fastspeech2_config["model"])
|
||||
|
||||
model.set_state_dict(
|
||||
paddle.load(args.fastspeech2_checkpoint)["main_params"])
|
||||
model.eval()
|
||||
|
||||
vocoder = MelGANGenerator(**melgan_config["generator_params"])
|
||||
vocoder.set_state_dict(
|
||||
paddle.load(args.melgan_checkpoint)["generator_params"])
|
||||
vocoder.remove_weight_norm()
|
||||
vocoder.eval()
|
||||
print("model done!")
|
||||
|
||||
frontend = Frontend(phone_vocab_path=args.phones_dict)
|
||||
print("frontend done!")
|
||||
|
||||
stat = np.load(args.fastspeech2_stat)
|
||||
mu, std = stat
|
||||
mu = paddle.to_tensor(mu)
|
||||
std = paddle.to_tensor(std)
|
||||
fastspeech2_normalizer = ZScore(mu, std)
|
||||
|
||||
stat = np.load(args.melgan_stat)
|
||||
mu, std = stat
|
||||
mu = paddle.to_tensor(mu)
|
||||
std = paddle.to_tensor(std)
|
||||
pwg_normalizer = ZScore(mu, std)
|
||||
|
||||
fastspeech2_inference = FastSpeech2Inference(fastspeech2_normalizer, model)
|
||||
fastspeech2_inference.eval()
|
||||
fastspeech2_inference = jit.to_static(
|
||||
fastspeech2_inference, input_spec=[InputSpec([-1], dtype=paddle.int64)])
|
||||
paddle.jit.save(fastspeech2_inference,
|
||||
os.path.join(args.inference_dir, "fastspeech2"))
|
||||
fastspeech2_inference = paddle.jit.load(
|
||||
os.path.join(args.inference_dir, "fastspeech2"))
|
||||
|
||||
mb_melgan_inference = MelGANInference(pwg_normalizer, vocoder)
|
||||
mb_melgan_inference.eval()
|
||||
mb_melgan_inference = jit.to_static(
|
||||
mb_melgan_inference,
|
||||
input_spec=[
|
||||
InputSpec([-1, 80], dtype=paddle.float32),
|
||||
])
|
||||
paddle.jit.save(mb_melgan_inference,
|
||||
os.path.join(args.inference_dir, "mb_melgan"))
|
||||
mb_melgan_inference = paddle.jit.load(
|
||||
os.path.join(args.inference_dir, "mb_melgan"))
|
||||
|
||||
output_dir = Path(args.output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
for utt_id, sentence in sentences:
|
||||
input_ids = frontend.get_input_ids(sentence, merge_sentences=True)
|
||||
phone_ids = input_ids["phone_ids"]
|
||||
flags = 0
|
||||
for part_phone_ids in phone_ids:
|
||||
with paddle.no_grad():
|
||||
mel = fastspeech2_inference(part_phone_ids)
|
||||
temp_wav = mb_melgan_inference(mel)
|
||||
if flags == 0:
|
||||
wav = temp_wav
|
||||
flags = 1
|
||||
else:
|
||||
wav = paddle.concat([wav, temp_wav])
|
||||
sf.write(
|
||||
str(output_dir / (utt_id + ".wav")),
|
||||
wav.numpy(),
|
||||
samplerate=fastspeech2_config.fs)
|
||||
print(f"{utt_id} done!")
|
||||
|
||||
|
||||
def main():
|
||||
# parse args and config and redirect to train_sp
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Synthesize with fastspeech2 & parallel wavegan.")
|
||||
parser.add_argument(
|
||||
"--fastspeech2-config", type=str, help="fastspeech2 config file.")
|
||||
parser.add_argument(
|
||||
"--fastspeech2-checkpoint",
|
||||
type=str,
|
||||
help="fastspeech2 checkpoint to load.")
|
||||
parser.add_argument(
|
||||
"--fastspeech2-stat",
|
||||
type=str,
|
||||
help="mean and standard deviation used to normalize spectrogram when training fastspeech2."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--melgan-config", type=str, help="parallel wavegan config file.")
|
||||
parser.add_argument(
|
||||
"--melgan-checkpoint",
|
||||
type=str,
|
||||
help="parallel wavegan generator parameters to load.")
|
||||
parser.add_argument(
|
||||
"--melgan-stat",
|
||||
type=str,
|
||||
help="mean and standard deviation used to normalize spectrogram when training parallel wavegan."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--phones-dict",
|
||||
type=str,
|
||||
default="phone_id_map.txt",
|
||||
help="phone vocabulary file.")
|
||||
parser.add_argument(
|
||||
"--text",
|
||||
type=str,
|
||||
help="text to synthesize, a 'utt_id sentence' pair per line.")
|
||||
parser.add_argument("--output-dir", type=str, help="output dir.")
|
||||
parser.add_argument(
|
||||
"--inference-dir", type=str, help="dir to save inference models")
|
||||
parser.add_argument(
|
||||
"--device", type=str, default="gpu", help="device type to use.")
|
||||
parser.add_argument("--verbose", type=int, default=1, help="verbose.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
paddle.set_device(args.device)
|
||||
|
||||
with open(args.fastspeech2_config) as f:
|
||||
fastspeech2_config = CfgNode(yaml.safe_load(f))
|
||||
with open(args.melgan_config) as f:
|
||||
melgan_config = CfgNode(yaml.safe_load(f))
|
||||
|
||||
print("========Args========")
|
||||
print(yaml.safe_dump(vars(args)))
|
||||
print("========Config========")
|
||||
print(fastspeech2_config)
|
||||
print(melgan_config)
|
||||
|
||||
evaluate(args, fastspeech2_config, melgan_config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,146 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import collections.abc as collections_abc
|
||||
|
||||
import paddle
|
||||
|
||||
_i0A = [
|
||||
-4.41534164647933937950E-18, 3.33079451882223809783E-17,
|
||||
-2.43127984654795469359E-16, 1.71539128555513303061E-15,
|
||||
-1.16853328779934516808E-14, 7.67618549860493561688E-14,
|
||||
-4.85644678311192946090E-13, 2.95505266312963983461E-12,
|
||||
-1.72682629144155570723E-11, 9.67580903537323691224E-11,
|
||||
-5.18979560163526290666E-10, 2.65982372468238665035E-9,
|
||||
-1.30002500998624804212E-8, 6.04699502254191894932E-8,
|
||||
-2.67079385394061173391E-7, 1.11738753912010371815E-6,
|
||||
-4.41673835845875056359E-6, 1.64484480707288970893E-5,
|
||||
-5.75419501008210370398E-5, 1.88502885095841655729E-4,
|
||||
-5.76375574538582365885E-4, 1.63947561694133579842E-3,
|
||||
-4.32430999505057594430E-3, 1.05464603945949983183E-2,
|
||||
-2.37374148058994688156E-2, 4.93052842396707084878E-2,
|
||||
-9.49010970480476444210E-2, 1.71620901522208775349E-1,
|
||||
-3.04682672343198398683E-1, 6.76795274409476084995E-1
|
||||
]
|
||||
|
||||
_i0B = [
|
||||
-7.23318048787475395456E-18, -4.83050448594418207126E-18,
|
||||
4.46562142029675999901E-17, 3.46122286769746109310E-17,
|
||||
-2.82762398051658348494E-16, -3.42548561967721913462E-16,
|
||||
1.77256013305652638360E-15, 3.81168066935262242075E-15,
|
||||
-9.55484669882830764870E-15, -4.15056934728722208663E-14,
|
||||
1.54008621752140982691E-14, 3.85277838274214270114E-13,
|
||||
7.18012445138366623367E-13, -1.79417853150680611778E-12,
|
||||
-1.32158118404477131188E-11, -3.14991652796324136454E-11,
|
||||
1.18891471078464383424E-11, 4.94060238822496958910E-10,
|
||||
3.39623202570838634515E-9, 2.26666899049817806459E-8,
|
||||
2.04891858946906374183E-7, 2.89137052083475648297E-6,
|
||||
6.88975834691682398426E-5, 3.36911647825569408990E-3,
|
||||
8.04490411014108831608E-1
|
||||
]
|
||||
|
||||
|
||||
def piecewise(x, condlist, funclist, *args, **kw):
|
||||
n2 = len(funclist)
|
||||
# n = len(condlist)
|
||||
n = 1
|
||||
if n == n2 - 1: # compute the "otherwise" condition.
|
||||
condelse = ~paddle.any(condlist, axis=0, keepdim=True)
|
||||
condlist = paddle.concat([condlist, condelse], axis=0)
|
||||
n += 1
|
||||
elif n != n2:
|
||||
raise ValueError(
|
||||
"with {} condition(s), either {} or {} functions are expected"
|
||||
.format(n, n, n + 1))
|
||||
|
||||
y = paddle.zeros(paddle.shape(x), x.dtype)
|
||||
for k in range(n):
|
||||
item = funclist[k]
|
||||
if not isinstance(item, collections_abc.Callable):
|
||||
y[condlist[k]] = item
|
||||
else:
|
||||
temp = condlist[k]
|
||||
if paddle.shape(x) == paddle.ones([1]):
|
||||
vals = x
|
||||
y = item(vals, *args, **kw)
|
||||
else:
|
||||
vals = x[temp]
|
||||
y[temp] = item(vals, *args, **kw)
|
||||
return y
|
||||
|
||||
|
||||
def _chbevl(x, vals):
|
||||
b0 = vals[0]
|
||||
b1 = 0.0
|
||||
for i in range(1, len(vals)):
|
||||
b2 = b1
|
||||
b1 = b0
|
||||
b0 = x * b1 - b2 + vals[i]
|
||||
|
||||
return 0.5 * (b0 - b2)
|
||||
|
||||
|
||||
def _i0_1(x):
|
||||
out = paddle.exp(x) * _chbevl(x / 2.0 - 2, _i0A)
|
||||
return paddle.cast(out, dtype="float32")
|
||||
|
||||
|
||||
def _i0_2(x):
|
||||
out = paddle.exp(x) * _chbevl(32.0 / x - 2.0, _i0B) / paddle.sqrt(x)
|
||||
return paddle.cast(out, dtype="float32")
|
||||
|
||||
|
||||
def _i0_dispatcher(x):
|
||||
return (x, )
|
||||
|
||||
|
||||
def i0(x):
|
||||
x = paddle.abs(x)
|
||||
condlist = x <= paddle.full([1], 8.0)
|
||||
condlist = condlist.unsqueeze(0)
|
||||
return piecewise(x, condlist, [_i0_1, _i0_2])
|
||||
|
||||
|
||||
def _len_guards(M):
|
||||
"""Handle small or incorrect window lengths"""
|
||||
if int(M) != M or M < 0:
|
||||
raise ValueError('Window length M must be a non-negative integer')
|
||||
return M <= 1
|
||||
|
||||
|
||||
def _extend(M, sym):
|
||||
"""Extend window by 1 sample if needed for DFT-even symmetry"""
|
||||
if not sym:
|
||||
return M + 1, True
|
||||
else:
|
||||
return M, False
|
||||
|
||||
|
||||
def _truncate(w, needed):
|
||||
"""Truncate window by 1 sample if needed for DFT-even symmetry"""
|
||||
if needed:
|
||||
return w[:-1]
|
||||
else:
|
||||
return w
|
||||
|
||||
|
||||
def kaiser(M, beta, sym=True):
|
||||
if _len_guards(M):
|
||||
return paddle.ones(M)
|
||||
M, needs_trunc = _extend(M, sym)
|
||||
n = paddle.arange(0, M)
|
||||
alpha = (M - 1) / 2.0
|
||||
a = i0(beta * paddle.sqrt(1 - ((n - alpha) / alpha)**2.0))
|
||||
b = i0(paddle.full([1], beta))
|
||||
w = a / b
|
||||
return _truncate(w, needs_trunc)
|
Loading…
Reference in new issue