Update README.md

Correct the mistakes mentioned by @zh794390558.
pull/946/head
Mingxue-Xu 3 years ago committed by GitHub
parent 00a50a0101
commit b8818991c0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -9,55 +9,48 @@ English | [简体中文](README_ch.md)
</p> </p>
<div align="center"> <div align="center">
<h3> <h3>
<a href="https://github.com/Mingxue-Xu/DeepSpeech#quick-start"> Quick Start </a> <a href="#quick-start"> Quick Start </a>
| <a href="https://github.com/Mingxue-Xu/DeepSpeech#tutorials"> Tutorials </a> | <a href="#tutorials"> Tutorials </a>
| <a href="https://github.com/Mingxue-Xu/DeepSpeech#model-list"> Models List </a> | <a href="#model-list"> Models List </a>
</div> </div>
------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------
![License](https://img.shields.io/badge/license-Apache%202-red.svg) ![License](https://img.shields.io/badge/license-Apache%202-red.svg)
![python version](https://img.shields.io/badge/python-3.7+-orange.svg) ![python version](https://img.shields.io/badge/python-3.7+-orange.svg)
![support os](https://img.shields.io/badge/os-linux-yellow.svg) ![support os](https://img.shields.io/badge/os-linux-yellow.svg)
<!--- <!---
why they should use your module, why they should use your module,
how they can install it, how they can install it,
how they can use it how they can use it
--> -->
**PaddleSpeech** is an open-source toolkit on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform for two critical tasks in Speech - **Automatic Speech Recognition (ASR)** and **Text-To-Speech Synthesis (TTS)**, with modules involving state-of-art and influential models. **PaddleSpeech** is an open-source toolkit on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform for a variety of critical tasks in speech, with state-of-art and influential models.
Via the easy-to-use, efficient, flexible and scalable implementation, our vision is to empower both industrial application and academic research, including training, inference & testing module, and deployment. Besides, this toolkit also features at: Via the easy-to-use, efficient, flexible and scalable implementation, our vision is to empower both industrial application and academic research, including training, inference & testing modules, and deployment process. To be more specific, this toolkit features at:
- **Fast and Light-weight**: we provide a high-speed and ultra-lightweight model that is convenient for industrial deployment. - **Fast and Light-weight**: we provide high-speed and ultra-lightweight models that are convenient for industrial deployment.
- **Rule-based Chinese frontend**: our frontend contains Text Normalization (TN) and Grapheme-to-Phoneme (G2P, including Polyphone and Tone Sandhi). Moreover, we use self-defined linguistic rules to adapt Chinese context. - **Rule-based Chinese frontend**: our frontend contains Text Normalization (TN) and Grapheme-to-Phoneme (G2P, including Polyphone and Tone Sandhi). Moreover, we use self-defined linguistic rules to adapt Chinese context.
- **Varieties of Functions that Vitalize Research**: - **Varieties of Functions that Vitalize both Industrial and Academia**:
- *Integration of mainstream models and datasets*: the toolkit implements modules that participate in the whole pipeline of both ASR and TTS, and uses datasets like LibriSpeech, LJSpeech, AIShell, etc. See also [model lists](#models-list) for more details. - *Implementation of critical audio tasks*: this toolkit contains audio functions like Speech Translation (ST), Automatic Speech Recognition (ASR), Text-To-Speech Synthesis (TTS), Voice Cloning(VC), Punctuation Restoration, etc.
- *Support of ASR streaming and non-streaming data*: This toolkit contains non-streaming/streaming models like [DeepSpeech2](http://proceedings.mlr.press/v48/amodei16.pdf), [Transformer](https://arxiv.org/abs/1706.03762), [Conformer](https://arxiv.org/abs/2005.08100) and [U2](https://arxiv.org/pdf/2012.05481.pdf). - *Integration of mainstream models and datasets*: the toolkit implements modules that participate in the whole pipeline of the speech tasks, and uses mainstream datasets like LibriSpeech, LJSpeech, AIShell, CSMSC, etc. See also [model lists](#models-list) for more details.
- *Cross-domain application*: as an extension of the application of traditional audio tasks, we combine the aforementioned tasks with other fields like NLP.
Let's install PaddleSpeech with only a few lines of code! Let's install PaddleSpeech with only a few lines of code!
>Note: The official name is still deepspeech. 2021/10/26 >Note: The official name is still deepspeech. 2021/10/26
``` shell If you are using Ubuntu, PaddleSpeech can be set up with pip installation (with root privilege).
# 1. Install essential libraries and paddlepaddle first. ```shell
# install prerequisites
sudo apt-get install -y sox pkg-config libflac-dev libogg-dev libvorbis-dev libboost-dev swig python3-dev libsndfile1
# `pip install paddlepaddle-gpu` instead if you are using GPU.
pip install paddlepaddle
# 2.Then install PaddleSpeech.
git clone https://github.com/PaddlePaddle/DeepSpeech.git git clone https://github.com/PaddlePaddle/DeepSpeech.git
cd DeepSpeech cd DeepSpeech
pip install -e . pip install -e .
``` ```
## Table of Contents ## Table of Contents
The contents of this README is as follow: The contents of this README is as follow:
- [Alternative Installation](#installation) - [Alternative Installation](#alternative-installation)
- [Quick Start](#quick-start) - [Quick Start](#quick-start)
- [Models List](#models-list) - [Models List](#models-list)
- [Tutorials](#tutorials) - [Tutorials](#tutorials)
@ -75,10 +68,13 @@ The base environment in this page is
If you want to set up PaddleSpeech in other environment, please see the [ASR installation](docs/source/asr/install.md) and [TTS installation](docs/source/tts/install.md) documents for all the alternatives. If you want to set up PaddleSpeech in other environment, please see the [ASR installation](docs/source/asr/install.md) and [TTS installation](docs/source/tts/install.md) documents for all the alternatives.
## Quick Start ## Quick Start
> Note: the current links to `English ASR` and `English TTS` are not valid.
> Note: `ckptfile` should be replaced by real path that represents files or folders later. Similarly, `exp/default` is the folder that contains the pretrained models. Just a quick test of our functions: [English ASR](link/hubdetail?name=deepspeech2_aishell&en_category=AutomaticSpeechRecognition) and [English TTS](link/hubdetail?name=fastspeech2_baker&en_category=TextToSpeech) by typing message or upload your own audio file.
Try a tiny ASR DeepSpeech2 model training on toy set of LibriSpeech: Developers can have a try of our model with only a few lines of code.
A tiny *ASR* DeepSpeech2 model training on toy set of LibriSpeech:
```shell ```shell
cd examples/tiny/s0/ cd examples/tiny/s0/
@ -90,12 +86,13 @@ bash local/data.sh
bash local/test.sh conf/deepspeech2.yaml ckptfile offline bash local/test.sh conf/deepspeech2.yaml ckptfile offline
``` ```
For TTS, try FastSpeech2 on LJSpeech: For *TTS*, try FastSpeech2 on LJSpeech:
- Download LJSpeech-1.1 from the [ljspeech official website](https://keithito.com/LJ-Speech-Dataset/) and our prepared durations for fastspeech2 [ljspeech_alignment](https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/ljspeech_alignment.tar.gz). - Download LJSpeech-1.1 from the [ljspeech official website](https://keithito.com/LJ-Speech-Dataset/), our prepared durations for fastspeech2 [ljspeech_alignment](https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/ljspeech_alignment.tar.gz).
- The pretrained models are seperated into two parts: [fastspeech2_nosil_ljspeech_ckpt](https://paddlespeech.bj.bcebos.com/Parakeet/fastspeech2_nosil_ljspeech_ckpt_0.5.zip) and [pwg_ljspeech_ckpt](https://paddlespeech.bj.bcebos.com/Parakeet/pwg_ljspeech_ckpt_0.5.zip). Please download then unzip to `./model/fastspeech2` and `./model/pwg` respectively.
- Assume your path to the dataset is `~/datasets/LJSpeech-1.1` and `./ljspeech_alignment` accordingly, preprocess your data and then use our pretrained model to synthesize: - Assume your path to the dataset is `~/datasets/LJSpeech-1.1` and `./ljspeech_alignment` accordingly, preprocess your data and then use our pretrained model to synthesize:
```shell ```shell
bash ./local/preprocess.sh conf/default.yaml bash ./local/preprocess.sh conf/default.yaml
bash ./local/synthesize_e2e.sh conf/default.yaml exp/default ckptfile bash ./local/synthesize_e2e.sh conf/default.yaml ./model/fastspeech2/snapshot_iter_100000.pdz ./model/pwg/pwg_snapshot_iter_400000.pdz
``` ```
@ -104,14 +101,17 @@ If you want to try more functions like training and tuning, please see [ASR gett
## Models List ## Models List
PaddleSpeech supports a series of most popular models, summarized in [released models](./docs/source/released_model.md) with available pretrained models.
ASR module contains *Acoustic Model* and *Language Model*, with the following details:
PaddleSpeech ASR supports a lot of mainstream models, which are summarized as follow. For more information, please refer to [ASR Models](./docs/source/asr/released_model.md).
<!--- <!---
The current hyperlinks redirect to [Previous Parakeet](https://github.com/PaddlePaddle/Parakeet/tree/develop/examples). The current hyperlinks redirect to [Previous Parakeet](https://github.com/PaddlePaddle/Parakeet/tree/develop/examples).
--> -->
> Note: The `Link` should be code path rather than download links.
<table> <table>
<thead> <thead>
<tr> <tr>
@ -125,7 +125,7 @@ The current hyperlinks redirect to [Previous Parakeet](https://github.com/Paddle
<tr> <tr>
<td rowspan="6">Acoustic Model</td> <td rowspan="6">Acoustic Model</td>
<td rowspan="4" >Aishell</td> <td rowspan="4" >Aishell</td>
<td >2 Conv + 5 LSTM layers with only forward direction </td> <td >2 Conv + 5 LSTM layers with only forward direction</td>
<td> <td>
<a href = "https://deepspeech.bj.bcebos.com/release2.1/aishell/s0/aishell.s0.ds_online.5rnn.debug.tar.gz">Ds2 Online Aishell Model</a> <a href = "https://deepspeech.bj.bcebos.com/release2.1/aishell/s0/aishell.s0.ds_online.5rnn.debug.tar.gz">Ds2 Online Aishell Model</a>
</td> </td>
@ -200,7 +200,7 @@ PaddleSpeech TTS mainly contains three modules: *Text Frontend*, *Acoustic Model
<td> Text Frontend</td> <td> Text Frontend</td>
<td colspan="2"> &emsp; </td> <td colspan="2"> &emsp; </td>
<td> <td>
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/other/text_frontend">chinese-fronted</a> <a href = "./examples/other/text_frontend">chinese-fronted</a>
</td> </td>
</tr> </tr>
<tr> <tr>
@ -208,41 +208,41 @@ PaddleSpeech TTS mainly contains three modules: *Text Frontend*, *Acoustic Model
<td >Tacotron2</td> <td >Tacotron2</td>
<td rowspan="2" >LJSpeech</td> <td rowspan="2" >LJSpeech</td>
<td> <td>
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/ljspeech/tts0">tacotron2-vctk</a> <a href = "./examples/ljspeech/tts0">tacotron2-vctk</a>
</td> </td>
</tr> </tr>
<tr> <tr>
<td>TransformerTTS</td> <td>TransformerTTS</td>
<td> <td>
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/ljspeech/tts1">transformer-ljspeech</a> <a href = "./examples/ljspeech/tts1">transformer-ljspeech</a>
</td> </td>
</tr> </tr>
<tr> <tr>
<td>SpeedySpeech</td> <td>SpeedySpeech</td>
<td>CSMSC</td> <td>CSMSC</td>
<td > <td >
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/csmsc/tts2">speedyspeech-csmsc</a> <a href = "./examples/csmsc/tts2">speedyspeech-csmsc</a>
</td> </td>
</tr> </tr>
<tr> <tr>
<td rowspan="4">FastSpeech2</td> <td rowspan="4">FastSpeech2</td>
<td>AISHELL-3</td> <td>AISHELL-3</td>
<td> <td>
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/aishell3/tts3">fastspeech2-aishell3</a> <a href = "./examples/aishell3/tts3">fastspeech2-aishell3</a>
</td> </td>
</tr> </tr>
<tr> <tr>
<td>VCTK</td> <td>VCTK</td>
<td> <a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/vctk/tts3">fastspeech2-vctk</a> </td> <td> <a href = "./examples/vctk/tts3">fastspeech2-vctk</a> </td>
</tr> </tr>
<tr> <tr>
<td>LJSpeech</td> <td>LJSpeech</td>
<td> <a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/ljspeech/tts3">fastspeech2-ljspeech</a> </td> <td> <a href = "./examples/ljspeech/tts3">fastspeech2-ljspeech</a> </td>
</tr> </tr>
<tr> <tr>
<td>CSMSC</td> <td>CSMSC</td>
<td> <td>
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/csmsc/tts3">fastspeech2-csmsc</a> <a href = "./examples/csmsc/tts3">fastspeech2-csmsc</a>
</td> </td>
</tr> </tr>
<tr> <tr>
@ -250,26 +250,26 @@ PaddleSpeech TTS mainly contains three modules: *Text Frontend*, *Acoustic Model
<td >WaveFlow</td> <td >WaveFlow</td>
<td >LJSpeech</td> <td >LJSpeech</td>
<td> <td>
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/ljspeech/voc0">waveflow-ljspeech</a> <a href = "./examples/ljspeech/voc0">waveflow-ljspeech</a>
</td> </td>
</tr> </tr>
<tr> <tr>
<td rowspan="3">Parallel WaveGAN</td> <td rowspan="3">Parallel WaveGAN</td>
<td >LJSpeech</td> <td >LJSpeech</td>
<td> <td>
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/ljspeech/voc1">PWGAN-ljspeech</a> <a href = "./examples/ljspeech/voc1">PWGAN-ljspeech</a>
</td> </td>
</tr> </tr>
<tr> <tr>
<td >VCTK</td> <td >VCTK</td>
<td> <td>
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/vctk/voc1">PWGAN-vctk</a> <a href = "./examples/vctk/voc1">PWGAN-vctk</a>
</td> </td>
</tr> </tr>
<tr> <tr>
<td >CSMSC</td> <td >CSMSC</td>
<td> <td>
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/csmsc/voc1">PWGAN-csmsc</a> <a href = "./examples/csmsc/voc1">PWGAN-csmsc</a>
</td> </td>
</tr> </tr>
<tr> <tr>
@ -277,14 +277,14 @@ PaddleSpeech TTS mainly contains three modules: *Text Frontend*, *Acoustic Model
<td>GE2E</td> <td>GE2E</td>
<td >AISHELL-3, etc.</td> <td >AISHELL-3, etc.</td>
<td> <td>
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/other/ge2e">ge2e</a> <a href = "./examples/other/ge2e">ge2e</a>
</td> </td>
</tr> </tr>
<tr> <tr>
<td>GE2E + Tactron2</td> <td>GE2E + Tactron2</td>
<td>AISHELL-3</td> <td>AISHELL-3</td>
<td> <td>
<a href = "https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/aishell3/vc0">ge2e-tactron2-aishell3</a> <a href = "./examples/aishell3/vc0">ge2e-tactron2-aishell3</a>
</td> </td>
</td> </td>
</tr> </tr>

Loading…
Cancel
Save