Merge pull request #1506 from yt605155624/fix_frontend

[TTS]update text frontend, test=tts
pull/1514/head
TianYuan 3 years ago committed by GitHub
commit b6d33a7fb4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -561,6 +561,7 @@ You are warmly welcome to submit questions in [discussions](https://github.com/P
- Many thanks to [JiehangXie](https://github.com/JiehangXie)/[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo) for developing Virtual Uploader(VUP)/Virtual YouTuber(VTuber) with PaddleSpeech TTS function. - Many thanks to [JiehangXie](https://github.com/JiehangXie)/[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo) for developing Virtual Uploader(VUP)/Virtual YouTuber(VTuber) with PaddleSpeech TTS function.
- Many thanks to [745165806](https://github.com/745165806)/[PaddleSpeechTask](https://github.com/745165806/PaddleSpeechTask) for contributing Punctuation Restoration model. - Many thanks to [745165806](https://github.com/745165806)/[PaddleSpeechTask](https://github.com/745165806/PaddleSpeechTask) for contributing Punctuation Restoration model.
- Many thanks to [kslz](https://github.com/745165806) for supplementary Chinese documents. - Many thanks to [kslz](https://github.com/745165806) for supplementary Chinese documents.
- Many thanks to [awmmmm](https://github.com/awmmmm) for contributing fastspeech2 aishell3 conformer pretrained model.
Besides, PaddleSpeech depends on a lot of open source repositories. See [references](./docs/source/reference.md) for more information. Besides, PaddleSpeech depends on a lot of open source repositories. See [references](./docs/source/reference.md) for more information.

@ -556,6 +556,7 @@ year={2021}
- 非常感谢 [JiehangXie](https://github.com/JiehangXie)/[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo) 采用 PaddleSpeech 语音合成功能实现 Virtual Uploader(VUP)/Virtual YouTuber(VTuber) 虚拟主播。 - 非常感谢 [JiehangXie](https://github.com/JiehangXie)/[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo) 采用 PaddleSpeech 语音合成功能实现 Virtual Uploader(VUP)/Virtual YouTuber(VTuber) 虚拟主播。
- 非常感谢 [745165806](https://github.com/745165806)/[PaddleSpeechTask](https://github.com/745165806/PaddleSpeechTask) 贡献标点重建相关模型。 - 非常感谢 [745165806](https://github.com/745165806)/[PaddleSpeechTask](https://github.com/745165806/PaddleSpeechTask) 贡献标点重建相关模型。
- 非常感谢 [kslz](https://github.com/kslz) 补充中文文档。 - 非常感谢 [kslz](https://github.com/kslz) 补充中文文档。
- 非常感谢 [awmmmm](https://github.com/awmmmm) 提供 fastspeech2 aishell3 conformer 预训练模型。
此外PaddleSpeech 依赖于许多开源存储库。有关更多信息,请参阅 [references](./docs/source/reference.md)。 此外PaddleSpeech 依赖于许多开源存储库。有关更多信息,请参阅 [references](./docs/source/reference.md)。

@ -225,7 +225,9 @@ optional arguments:
9. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu. 9. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
## Pretrained Model ## Pretrained Model
Pretrained FastSpeech2 model with no silence in the edge of audios. [fastspeech2_nosil_aishell3_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_ckpt_0.4.zip) Pretrained FastSpeech2 model with no silence in the edge of audios:
- [fastspeech2_nosil_aishell3_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_ckpt_0.4.zip)
- [fastspeech2_conformer_aishell3_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_conformer_aishell3_ckpt_0.2.0.zip) (Thanks for [@awmmmm](https://github.com/awmmmm)'s contribution)
FastSpeech2 checkpoint contains files listed below. FastSpeech2 checkpoint contains files listed below.

@ -0,0 +1,110 @@
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 24000 # sr
n_fft: 2048 # FFT size (samples).
n_shift: 300 # Hop size (samples). 12.5ms
win_length: 1200 # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
# Only used for feats_type != raw
fmin: 80 # Minimum frequency of Mel basis.
fmax: 7600 # Maximum frequency of Mel basis.
n_mels: 80 # The number of mel basis.
# Only used for the model using pitch features (e.g. FastSpeech2)
f0min: 80 # Maximum f0 for pitch extraction.
f0max: 400 # Minimum f0 for pitch extraction.
###########################################################
# DATA SETTING #
###########################################################
batch_size: 32
num_workers: 4
###########################################################
# MODEL SETTING #
###########################################################
model:
adim: 384 # attention dimension
aheads: 2 # number of attention heads
elayers: 4 # number of encoder layers
eunits: 1536 # number of encoder ff units
dlayers: 4 # number of decoder layers
dunits: 1536 # number of decoder ff units
positionwise_layer_type: conv1d # type of position-wise layer
positionwise_conv_kernel_size: 3 # kernel size of position wise conv layer
duration_predictor_layers: 2 # number of layers of duration predictor
duration_predictor_chans: 256 # number of channels of duration predictor
duration_predictor_kernel_size: 3 # filter size of duration predictor
postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet
encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input
reduction_factor: 1 # reduction factor
encoder_type: conformer # encoder type
decoder_type: conformer # decoder type
conformer_pos_enc_layer_type: rel_pos # conformer positional encoding type
conformer_self_attn_layer_type: rel_selfattn # conformer self-attention type
conformer_activation_type: swish # conformer activation type
use_macaron_style_in_conformer: true # whether to use macaron style in conformer
use_cnn_in_conformer: true # whether to use CNN in conformer
conformer_enc_kernel_size: 7 # kernel size in CNN module of conformer-based encoder
conformer_dec_kernel_size: 31 # kernel size in CNN module of conformer-based decoder
init_type: xavier_uniform # initialization type
transformer_enc_dropout_rate: 0.2 # dropout rate for transformer encoder layer
transformer_enc_positional_dropout_rate: 0.2 # dropout rate for transformer encoder positional encoding
transformer_enc_attn_dropout_rate: 0.2 # dropout rate for transformer encoder attention layer
transformer_dec_dropout_rate: 0.2 # dropout rate for transformer decoder layer
transformer_dec_positional_dropout_rate: 0.2 # dropout rate for transformer decoder positional encoding
transformer_dec_attn_dropout_rate: 0.2 # dropout rate for transformer decoder attention layer
pitch_predictor_layers: 5 # number of conv layers in pitch predictor
pitch_predictor_chans: 256 # number of channels of conv layers in pitch predictor
pitch_predictor_kernel_size: 5 # kernel size of conv leyers in pitch predictor
pitch_predictor_dropout: 0.5 # dropout rate in pitch predictor
pitch_embed_kernel_size: 1 # kernel size of conv embedding layer for pitch
pitch_embed_dropout: 0.0 # dropout rate after conv embedding layer for pitch
stop_gradient_from_pitch_predictor: true # whether to stop the gradient from pitch predictor to encoder
energy_predictor_layers: 2 # number of conv layers in energy predictor
energy_predictor_chans: 256 # number of channels of conv layers in energy predictor
energy_predictor_kernel_size: 3 # kernel size of conv leyers in energy predictor
energy_predictor_dropout: 0.5 # dropout rate in energy predictor
energy_embed_kernel_size: 1 # kernel size of conv embedding layer for energy
energy_embed_dropout: 0.0 # dropout rate after conv embedding layer for energy
stop_gradient_from_energy_predictor: false # whether to stop the gradient from energy predictor to encoder
spk_embed_dim: 256 # speaker embedding dimension
spk_embed_integration_type: concat # speaker embedding integration type
###########################################################
# UPDATER SETTING #
###########################################################
updater:
use_masking: True # whether to apply masking for padded part in loss calculation
###########################################################
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 1000
num_snapshots: 5
###########################################################
# OTHER SETTING #
###########################################################
seed: 10086

@ -10,7 +10,7 @@ Run the command below to get the results of the test.
```bash ```bash
./run.sh ./run.sh
``` ```
The `avg WER` of g2p is: 0.027124048652822204 The `avg WER` of g2p is: 0.026014352515701198
```text ```text
,--------------------------------------------------------------------. ,--------------------------------------------------------------------.
| | # Snt # Wrd | Corr Sub Del Ins Err S.Err | | | # Snt # Wrd | Corr Sub Del Ins Err S.Err |

@ -63,7 +63,7 @@ class ToneSandhi():
'扫把', '惦记' '扫把', '惦记'
} }
self.must_not_neural_tone_words = { self.must_not_neural_tone_words = {
"男子", "女子", "分子", "原子", "量子", "莲子", "石子", "瓜子", "电子" "男子", "女子", "分子", "原子", "量子", "莲子", "石子", "瓜子", "电子", "人人", "虎虎"
} }
self.punc = ":,;。?!“”‘’':,;.?!" self.punc = ":,;。?!“”‘’':,;.?!"
@ -77,7 +77,9 @@ class ToneSandhi():
# reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺 # reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
for j, item in enumerate(word): for j, item in enumerate(word):
if j - 1 >= 0 and item == word[j - 1] and pos[0] in {"n", "v", "a"}: if j - 1 >= 0 and item == word[j - 1] and pos[0] in {
"n", "v", "a"
} and word not in self.must_not_neural_tone_words:
finals[j] = finals[j][:-1] + "5" finals[j] = finals[j][:-1] + "5"
ge_idx = word.find("") ge_idx = word.find("")
if len(word) >= 1 and word[-1] in "吧呢哈啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶": if len(word) >= 1 and word[-1] in "吧呢哈啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":

@ -20,7 +20,10 @@ import numpy as np
import paddle import paddle
from g2pM import G2pM from g2pM import G2pM
from pypinyin import lazy_pinyin from pypinyin import lazy_pinyin
from pypinyin import load_phrases_dict
from pypinyin import load_single_dict
from pypinyin import Style from pypinyin import Style
from pypinyin_dict.phrase_pinyin_data import large_pinyin
from paddlespeech.t2s.frontend.generate_lexicon import generate_lexicon from paddlespeech.t2s.frontend.generate_lexicon import generate_lexicon
from paddlespeech.t2s.frontend.tone_sandhi import ToneSandhi from paddlespeech.t2s.frontend.tone_sandhi import ToneSandhi
@ -41,6 +44,8 @@ class Frontend():
self.g2pM_model = G2pM() self.g2pM_model = G2pM()
self.pinyin2phone = generate_lexicon( self.pinyin2phone = generate_lexicon(
with_tone=True, with_erhua=False) with_tone=True, with_erhua=False)
else:
self.__init__pypinyin()
self.must_erhua = {"小院儿", "胡同儿", "范儿", "老汉儿", "撒欢儿", "寻老礼儿", "妥妥儿"} self.must_erhua = {"小院儿", "胡同儿", "范儿", "老汉儿", "撒欢儿", "寻老礼儿", "妥妥儿"}
self.not_erhua = { self.not_erhua = {
"虐儿", "为儿", "护儿", "瞒儿", "救儿", "替儿", "有儿", "一儿", "我儿", "俺儿", "妻儿", "虐儿", "为儿", "护儿", "瞒儿", "救儿", "替儿", "有儿", "一儿", "我儿", "俺儿", "妻儿",
@ -62,6 +67,23 @@ class Frontend():
for tone, id in tone_id: for tone, id in tone_id:
self.vocab_tones[tone] = int(id) self.vocab_tones[tone] = int(id)
def __init__pypinyin(self):
large_pinyin.load()
load_phrases_dict({u'开户行': [[u'ka1i'], [u'hu4'], [u'hang2']]})
load_phrases_dict({u'发卡行': [[u'fa4'], [u'ka3'], [u'hang2']]})
load_phrases_dict({u'放款行': [[u'fa4ng'], [u'kua3n'], [u'hang2']]})
load_phrases_dict({u'茧行': [[u'jia3n'], [u'hang2']]})
load_phrases_dict({u'行号': [[u'hang2'], [u'ha4o']]})
load_phrases_dict({u'各地': [[u'ge4'], [u'di4']]})
load_phrases_dict({u'借还款': [[u'jie4'], [u'hua2n'], [u'kua3n']]})
load_phrases_dict({u'时间为': [[u'shi2'], [u'jia1n'], [u'we2i']]})
load_phrases_dict({u'为准': [[u'we2i'], [u'zhu3n']]})
load_phrases_dict({u'色差': [[u'se4'], [u'cha1']]})
# 调整字的拼音顺序
load_single_dict({ord(u''): u'de,di4'})
def _get_initials_finals(self, word: str) -> List[List[str]]: def _get_initials_finals(self, word: str) -> List[List[str]]:
initials = [] initials = []
finals = [] finals = []

@ -63,7 +63,10 @@ def replace_time(match) -> str:
result = f"{num2str(hour)}" result = f"{num2str(hour)}"
if minute.lstrip('0'): if minute.lstrip('0'):
result += f"{_time_num2str(minute)}" if int(minute) == 30:
result += f""
else:
result += f"{_time_num2str(minute)}"
if second and second.lstrip('0'): if second and second.lstrip('0'):
result += f"{_time_num2str(second)}" result += f"{_time_num2str(second)}"
@ -71,7 +74,10 @@ def replace_time(match) -> str:
result += "" result += ""
result += f"{num2str(hour_2)}" result += f"{num2str(hour_2)}"
if minute_2.lstrip('0'): if minute_2.lstrip('0'):
result += f"{_time_num2str(minute_2)}" if int(minute) == 30:
result += f""
else:
result += f"{_time_num2str(minute_2)}"
if second_2 and second_2.lstrip('0'): if second_2 and second_2.lstrip('0'):
result += f"{_time_num2str(second_2)}" result += f"{_time_num2str(second_2)}"

@ -28,7 +28,7 @@ UNITS = OrderedDict({
8: '亿', 8: '亿',
}) })
COM_QUANTIFIERS = '(朵|匹|张|座|回|场|尾|条|个|首|阙|阵|网|炮|顶|丘|棵|只|支|袭|辆|挑|担|颗|壳|窠|曲|墙|群|腔|砣|座|客|贯|扎|捆|刀|令|打|手|罗|坡|山|岭|江|溪|钟|队|单|双|对|出|口|头|脚|板|跳|枝|件|贴|针|线|管|名|位|身|堂|课|本|页|家|户|层|丝|毫|厘|分|钱|两|斤|担|铢|石|钧|锱|忽|(千|毫|微)克|毫|厘|(公)分|分|寸|尺|丈|里|寻|常|铺|程|(千|分|厘|毫|微)米|米|撮|勺|合|升|斗|石|盘|碗|碟|叠|桶|笼|盆|盒|杯|钟|斛|锅|簋|篮|盘|桶|罐|瓶|壶|卮|盏|箩|箱|煲|啖|袋|钵|年|月|日|季|刻|时|周|天|秒|分|旬|纪|岁|世|更|夜|春|夏|秋|冬|代|伏|辈|丸|泡|粒|颗|幢|堆|条|根|支|道|面|片|张|颗|块|元|(亿|千万|百万|万|千|百)|(亿|千万|百万|万|千|百|美|)元|(亿|千万|百万|万|千|百|)块|角|毛|分)' COM_QUANTIFIERS = '(所|朵|匹|张|座|回|场|尾|条|个|首|阙|阵|网|炮|顶|丘|棵|只|支|袭|辆|挑|担|颗|壳|窠|曲|墙|群|腔|砣|座|客|贯|扎|捆|刀|令|打|手|罗|坡|山|岭|江|溪|钟|队|单|双|对|出|口|头|脚|板|跳|枝|件|贴|针|线|管|名|位|身|堂|课|本|页|家|户|层|丝|毫|厘|分|钱|两|斤|担|铢|石|钧|锱|忽|(千|毫|微)克|毫|厘|(公)分|分|寸|尺|丈|里|寻|常|铺|程|(千|分|厘|毫|微)米|米|撮|勺|合|升|斗|石|盘|碗|碟|叠|桶|笼|盆|盒|杯|钟|斛|锅|簋|篮|盘|桶|罐|瓶|壶|卮|盏|箩|箱|煲|啖|袋|钵|年|月|日|季|刻|时|周|天|秒|分|小时|旬|纪|岁|世|更|夜|春|夏|秋|冬|代|伏|辈|丸|泡|粒|颗|幢|堆|条|根|支|道|面|片|张|颗|块|元|(亿|千万|百万|万|千|百)|(亿|千万|百万|万|千|百|美|)元|(亿|千万|百万|万|千|百|)块|角|毛|分)'
# 分数表达式 # 分数表达式
RE_FRAC = re.compile(r'(-?)(\d+)/(\d+)') RE_FRAC = re.compile(r'(-?)(\d+)/(\d+)')
@ -110,7 +110,7 @@ def replace_default_num(match):
# 纯小数 # 纯小数
RE_DECIMAL_NUM = re.compile(r'(-?)((\d+)(\.\d+))' r'|(\.(\d+))') RE_DECIMAL_NUM = re.compile(r'(-?)((\d+)(\.\d+))' r'|(\.(\d+))')
# 正整数 + 量词 # 正整数 + 量词
RE_POSITIVE_QUANTIFIERS = re.compile(r"(\d+)([多余几])?" + COM_QUANTIFIERS) RE_POSITIVE_QUANTIFIERS = re.compile(r"(\d+)([多余几\+])?" + COM_QUANTIFIERS)
RE_NUMBER = re.compile(r'(-?)((\d+)(\.\d+)?)' r'|(\.(\d+))') RE_NUMBER = re.compile(r'(-?)((\d+)(\.\d+)?)' r'|(\.(\d+))')
@ -123,6 +123,8 @@ def replace_positive_quantifier(match) -> str:
""" """
number = match.group(1) number = match.group(1)
match_2 = match.group(2) match_2 = match.group(2)
if match_2 == "+":
match_2 = ""
match_2: str = match_2 if match_2 else "" match_2: str = match_2 if match_2 else ""
quantifiers: str = match.group(3) quantifiers: str = match.group(3)
number: str = num2str(number) number: str = num2str(number)
@ -151,6 +153,7 @@ def replace_number(match) -> str:
# 范围表达式 # 范围表达式
# match.group(1) and match.group(8) are copy from RE_NUMBER # match.group(1) and match.group(8) are copy from RE_NUMBER
RE_RANGE = re.compile( RE_RANGE = re.compile(
r'((-?)((\d+)(\.\d+)?)|(\.(\d+)))[-~]((-?)((\d+)(\.\d+)?)|(\.(\d+)))') r'((-?)((\d+)(\.\d+)?)|(\.(\d+)))[-~]((-?)((\d+)(\.\d+)?)|(\.(\d+)))')

@ -63,11 +63,19 @@ class TextNormalizer():
# Only for pure Chinese here # Only for pure Chinese here
if lang == "zh": if lang == "zh":
text = text.replace(" ", "") text = text.replace(" ", "")
# 过滤掉特殊字符
text = re.sub(r'[《》【】<=>{}()#&@“”^_|…\\]', '', text)
text = self.SENTENCE_SPLITOR.sub(r'\1\n', text) text = self.SENTENCE_SPLITOR.sub(r'\1\n', text)
text = text.strip() text = text.strip()
sentences = [sentence.strip() for sentence in re.split(r'\n+', text)] sentences = [sentence.strip() for sentence in re.split(r'\n+', text)]
return sentences return sentences
def _post_replace(self, sentence: str) -> str:
sentence = sentence.replace('/', '')
sentence = sentence.replace('~', '')
return sentence
def normalize_sentence(self, sentence: str) -> str: def normalize_sentence(self, sentence: str) -> str:
# basic character conversions # basic character conversions
sentence = tranditional_to_simplified(sentence) sentence = tranditional_to_simplified(sentence)
@ -97,6 +105,7 @@ class TextNormalizer():
sentence) sentence)
sentence = RE_DEFAULT_NUM.sub(replace_default_num, sentence) sentence = RE_DEFAULT_NUM.sub(replace_default_num, sentence)
sentence = RE_NUMBER.sub(replace_number, sentence) sentence = RE_NUMBER.sub(replace_number, sentence)
sentence = self._post_replace(sentence)
return sentence return sentence

@ -48,6 +48,7 @@ base = [
"paddlespeech_feat", "paddlespeech_feat",
"praatio==5.0.0", "praatio==5.0.0",
"pypinyin", "pypinyin",
"pypinyin-dict",
"python-dateutil", "python-dateutil",
"pyworld", "pyworld",
"resampy==0.2.2", "resampy==0.2.2",

Loading…
Cancel
Save