Merge pull request #938 from KPatr1ck/develop

[audio] Merge PaddleAudio into PaddleSpeech.
pull/942/head
Hui Zhang 3 years ago committed by GitHub
commit b3ebf5d4c4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,7 @@
.ipynb_checkpoints/**
*.ipynb
nohup.out
__pycache__/
*.wav
*.m4a
obsolete/**

@ -0,0 +1,45 @@
repos:
- repo: local
hooks:
- id: yapf
name: yapf
entry: yapf
language: system
args: [-i, --style .style.yapf]
files: \.py$
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: a11d9314b22d8f8c7556443875b731ef05965464
hooks:
- id: check-merge-conflict
- id: check-symlinks
- id: end-of-file-fixer
- id: trailing-whitespace
- id: detect-private-key
- id: check-symlinks
- id: check-added-large-files
- repo: https://github.com/pycqa/isort
rev: 5.8.0
hooks:
- id: isort
name: isort (python)
- id: isort
name: isort (cython)
types: [cython]
- id: isort
name: isort (pyi)
types: [pyi]
- repo: local
hooks:
- id: flake8
name: flake8
entry: flake8
language: system
args:
- --count
- --select=E9,F63,F7,F82
- --show-source
- --statistics
files: \.py$

@ -0,0 +1,3 @@
[style]
based_on_style = pep8
column_limit = 80

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

@ -0,0 +1,37 @@
# PaddleAudio: The audio library for PaddlePaddle
## Introduction
PaddleAudio is the audio toolkit to speed up your audio research and development loop in PaddlePaddle. It currently provides a collection of audio datasets, feature-extraction functions, audio transforms,state-of-the-art pre-trained models in sound tagging/classification and anomaly sound detection. More models and features are on the roadmap.
## Features
- Spectrogram and related features are compatible with librosa.
- State-of-the-art models in sound tagging on Audioset, sound classification on esc50, and more to come.
- Ready-to-use audio embedding with a line of code, includes sound embedding and more on the roadmap.
- Data loading supports for common open source audio in multiple languages including English, Mandarin and so on.
## Install
```
git clone https://github.com/PaddlePaddle/models
cd models/PaddleAudio
pip install .
```
## Quick start
### Audio loading and feature extraction
```
import paddleaudio as pa
s,r = pa.load(f)
mel_spect = pa.melspectrogram(s,sr=r)
```
### Examples
We provide a set of examples to help you get started in using PaddleAudio quickly.
- [PANNs: acoustic scene and events analysis using pre-trained models](./examples/panns)
- [Environmental Sound classification on ESC-50 dataset](./examples/sound_classification)
- [Training a audio-tagging network on Audioset](./examples/audioset_training)
Please refer to [example directory](./examples) for more details.

@ -0,0 +1,128 @@
# Audio Tagging
声音分类的任务是单标签的分类任务,但是对于一段音频来说,它可以是多标签的。譬如在一般的室内办公环境进行录音,这段音频里可能包含人们说话的声音、键盘敲打的声音、鼠标点击的声音,还有室内的一些其他背景声音。对于通用的声音识别和声音检测场景而言,对一段音频预测多个标签是具有很强的实用性的。
在IEEE ICASSP 2017 大会上,谷歌开放了一个大规模的音频数据集[Audioset](https://research.google.com/audioset/)。该数据集包含了 632 类的音频类别以及 2,084,320 条人工标记的每段 10 秒长度的声音剪辑片段来源于YouTube视频。目前该数据集已经有210万个已标注的视频数据5800小时的音频数据经过标记的声音样本的标签类别为527。
`PANNs`([PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition](https://arxiv.org/pdf/1912.10211.pdf))是基于Audioset数据集训练的声音分类/识别的模型。其预训练的任务是多标签的声音识别因此可用于声音的实时tagging。
本示例采用`PANNs`预训练模型基于Audioset的标签类别对输入音频实时tagging并最终以文本形式输出对应时刻的top k类别和对应的得分。
## 模型简介
PaddleAudio提供了PANNs的CNN14、CNN10和CNN6的预训练模型可供用户选择使用
- CNN14: 该模型主要包含12个卷积层和2个全连接层模型参数的数量为79.6Membbedding维度是2048。
- CNN10: 该模型主要包含8个卷积层和2个全连接层模型参数的数量为4.9Membbedding维度是512。
- CNN6: 该模型主要包含4个卷积层和2个全连接层模型参数的数量为4.5Membbedding维度是512。
## 快速开始
### 模型预测
```shell
export CUDA_VISIBLE_DEVICES=0
python audio_tag.py --device gpu --wav ./cat.wav --sample_duration 2 --hop_duration 0.3 --output_dir ./output_dir
```
可支持配置的参数:
- `device`: 选用什么设备进行训练可选cpu或gpu默认为gpu。如使用gpu训练则参数gpus指定GPU卡号。
- `wav`: 指定预测的音频文件。
- `sample_duration`: 模型每次预测的音频时间长度单位为秒默认为2s。
- `hop_duration`: 每两个预测音频的时间间隔单位为秒默认为0.3s。
- `output_dir`: 模型预测结果存放的路径,默认为`./output_dir`。
示例代码中使用的预训练模型为`CNN14`,如果想更换为其他预训练模型,可通过以下方式执行:
```python
from paddleaudio.models.panns import cnn14, cnn10, cnn6
# CNN14
model = cnn14(pretrained=True, extract_embedding=False)
# CNN10
model = cnn10(pretrained=True, extract_embedding=False)
# CNN6
model = cnn6(pretrained=True, extract_embedding=False)
```
执行结果:
```
[2021-04-30 19:15:41,025] [ INFO] - Saved tagging results to ./output_dir/audioset_tagging_sr_44100.npz
```
执行后得分结果保存在`output_dir`的`.npz`文件中。
### 生成tagging标签文本
```shell
python parse_result.py --tagging_file ./output_dir/audioset_tagging_sr_44100.npz --top_k 10 --smooth True --smooth_size 5 --label_file ./assets/audioset_labels.txt --output_dir ./output_dir
```
可支持配置的参数:
- `tagging_file`: 模型预测结果文件。
- `top_k`: 获取预测结果中得分最高的前top_k个标签默认为10。
- `smooth`: 预测结果的后验概率平滑默认为True表示应用平滑。
- `smooth_size`: 平滑计算过程中的样本数量默认为5。
- `label_file`: 模型预测结果对应的Audioset类别的文本文件。
- `output_dir`: 标签文本存放的路径,默认为`./output_dir`。
执行结果:
```
[2021-04-30 19:26:58,743] [ INFO] - Posterior smoothing...
[2021-04-30 19:26:58,746] [ INFO] - Saved tagging labels to ./output_dir/audioset_tagging_sr_44100.txt
```
执行后文本结果保存在`output_dir`的`.txt`文件中。
## Tagging标签文本
最终输出的文本结果如下所示。
样本每个时间范围的top k结果用空行分隔。在每一个结果中第一行是时间信息数字表示tagging结果在时间起点信息比例值代表当前时刻`t`与音频总长度`T`的比值紧接的k行是对应的标签和得分。
```
0.0
Cat: 0.9144676923751831
Animal: 0.8855036497116089
Domestic animals, pets: 0.804577112197876
Meow: 0.7422927021980286
Music: 0.19959309697151184
Inside, small room: 0.12550437450408936
Caterwaul: 0.021584441885352135
Purr: 0.020247288048267365
Speech: 0.018197158351540565
Vehicle: 0.007446660194545984
0.059197544398158296
Cat: 0.9250872135162354
Animal: 0.8957151174545288
Domestic animals, pets: 0.8228275775909424
Meow: 0.7650775909423828
Music: 0.20210561156272888
Inside, small room: 0.12290887534618378
Caterwaul: 0.029371455311775208
Purr: 0.018731823191046715
Speech: 0.017130598425865173
Vehicle: 0.007748497650027275
0.11839508879631659
Cat: 0.9336574673652649
Animal: 0.9111202359199524
Domestic animals, pets: 0.8349071145057678
Meow: 0.7761964797973633
Music: 0.20467285811901093
Inside, small room: 0.10709915310144424
Caterwaul: 0.05370649695396423
Purr: 0.018830426037311554
Speech: 0.017361722886562347
Vehicle: 0.006929398979991674
...
...
```
以下[Demo](https://bj.bcebos.com/paddleaudio/media/audio_tagging_demo.mp4)展示了一个将tagging标签输出到视频的例子可以实时地对音频进行多标签预测。
![](https://bj.bcebos.com/paddleaudio/media/audio_tagging_demo.gif)

@ -0,0 +1,527 @@
Speech
Male speech, man speaking
Female speech, woman speaking
Child speech, kid speaking
Conversation
Narration, monologue
Babbling
Speech synthesizer
Shout
Bellow
Whoop
Yell
Battle cry
Children shouting
Screaming
Whispering
Laughter
Baby laughter
Giggle
Snicker
Belly laugh
Chuckle, chortle
Crying, sobbing
Baby cry, infant cry
Whimper
Wail, moan
Sigh
Singing
Choir
Yodeling
Chant
Mantra
Male singing
Female singing
Child singing
Synthetic singing
Rapping
Humming
Groan
Grunt
Whistling
Breathing
Wheeze
Snoring
Gasp
Pant
Snort
Cough
Throat clearing
Sneeze
Sniff
Run
Shuffle
Walk, footsteps
Chewing, mastication
Biting
Gargling
Stomach rumble
Burping, eructation
Hiccup
Fart
Hands
Finger snapping
Clapping
Heart sounds, heartbeat
Heart murmur
Cheering
Applause
Chatter
Crowd
Hubbub, speech noise, speech babble
Children playing
Animal
Domestic animals, pets
Dog
Bark
Yip
Howl
Bow-wow
Growling
Whimper (dog)
Cat
Purr
Meow
Hiss
Caterwaul
Livestock, farm animals, working animals
Horse
Clip-clop
Neigh, whinny
Cattle, bovinae
Moo
Cowbell
Pig
Oink
Goat
Bleat
Sheep
Fowl
Chicken, rooster
Cluck
Crowing, cock-a-doodle-doo
Turkey
Gobble
Duck
Quack
Goose
Honk
Wild animals
Roaring cats (lions, tigers)
Roar
Bird
Bird vocalization, bird call, bird song
Chirp, tweet
Squawk
Pigeon, dove
Coo
Crow
Caw
Owl
Hoot
Bird flight, flapping wings
Canidae, dogs, wolves
Rodents, rats, mice
Mouse
Patter
Insect
Cricket
Mosquito
Fly, housefly
Buzz
Bee, wasp, etc.
Frog
Croak
Snake
Rattle
Whale vocalization
Music
Musical instrument
Plucked string instrument
Guitar
Electric guitar
Bass guitar
Acoustic guitar
Steel guitar, slide guitar
Tapping (guitar technique)
Strum
Banjo
Sitar
Mandolin
Zither
Ukulele
Keyboard (musical)
Piano
Electric piano
Organ
Electronic organ
Hammond organ
Synthesizer
Sampler
Harpsichord
Percussion
Drum kit
Drum machine
Drum
Snare drum
Rimshot
Drum roll
Bass drum
Timpani
Tabla
Cymbal
Hi-hat
Wood block
Tambourine
Rattle (instrument)
Maraca
Gong
Tubular bells
Mallet percussion
Marimba, xylophone
Glockenspiel
Vibraphone
Steelpan
Orchestra
Brass instrument
French horn
Trumpet
Trombone
Bowed string instrument
String section
Violin, fiddle
Pizzicato
Cello
Double bass
Wind instrument, woodwind instrument
Flute
Saxophone
Clarinet
Harp
Bell
Church bell
Jingle bell
Bicycle bell
Tuning fork
Chime
Wind chime
Change ringing (campanology)
Harmonica
Accordion
Bagpipes
Didgeridoo
Shofar
Theremin
Singing bowl
Scratching (performance technique)
Pop music
Hip hop music
Beatboxing
Rock music
Heavy metal
Punk rock
Grunge
Progressive rock
Rock and roll
Psychedelic rock
Rhythm and blues
Soul music
Reggae
Country
Swing music
Bluegrass
Funk
Folk music
Middle Eastern music
Jazz
Disco
Classical music
Opera
Electronic music
House music
Techno
Dubstep
Drum and bass
Electronica
Electronic dance music
Ambient music
Trance music
Music of Latin America
Salsa music
Flamenco
Blues
Music for children
New-age music
Vocal music
A capella
Music of Africa
Afrobeat
Christian music
Gospel music
Music of Asia
Carnatic music
Music of Bollywood
Ska
Traditional music
Independent music
Song
Background music
Theme music
Jingle (music)
Soundtrack music
Lullaby
Video game music
Christmas music
Dance music
Wedding music
Happy music
Funny music
Sad music
Tender music
Exciting music
Angry music
Scary music
Wind
Rustling leaves
Wind noise (microphone)
Thunderstorm
Thunder
Water
Rain
Raindrop
Rain on surface
Stream
Waterfall
Ocean
Waves, surf
Steam
Gurgling
Fire
Crackle
Vehicle
Boat, Water vehicle
Sailboat, sailing ship
Rowboat, canoe, kayak
Motorboat, speedboat
Ship
Motor vehicle (road)
Car
Vehicle horn, car horn, honking
Toot
Car alarm
Power windows, electric windows
Skidding
Tire squeal
Car passing by
Race car, auto racing
Truck
Air brake
Air horn, truck horn
Reversing beeps
Ice cream truck, ice cream van
Bus
Emergency vehicle
Police car (siren)
Ambulance (siren)
Fire engine, fire truck (siren)
Motorcycle
Traffic noise, roadway noise
Rail transport
Train
Train whistle
Train horn
Railroad car, train wagon
Train wheels squealing
Subway, metro, underground
Aircraft
Aircraft engine
Jet engine
Propeller, airscrew
Helicopter
Fixed-wing aircraft, airplane
Bicycle
Skateboard
Engine
Light engine (high frequency)
Dental drill, dentist's drill
Lawn mower
Chainsaw
Medium engine (mid frequency)
Heavy engine (low frequency)
Engine knocking
Engine starting
Idling
Accelerating, revving, vroom
Door
Doorbell
Ding-dong
Sliding door
Slam
Knock
Tap
Squeak
Cupboard open or close
Drawer open or close
Dishes, pots, and pans
Cutlery, silverware
Chopping (food)
Frying (food)
Microwave oven
Blender
Water tap, faucet
Sink (filling or washing)
Bathtub (filling or washing)
Hair dryer
Toilet flush
Toothbrush
Electric toothbrush
Vacuum cleaner
Zipper (clothing)
Keys jangling
Coin (dropping)
Scissors
Electric shaver, electric razor
Shuffling cards
Typing
Typewriter
Computer keyboard
Writing
Alarm
Telephone
Telephone bell ringing
Ringtone
Telephone dialing, DTMF
Dial tone
Busy signal
Alarm clock
Siren
Civil defense siren
Buzzer
Smoke detector, smoke alarm
Fire alarm
Foghorn
Whistle
Steam whistle
Mechanisms
Ratchet, pawl
Clock
Tick
Tick-tock
Gears
Pulleys
Sewing machine
Mechanical fan
Air conditioning
Cash register
Printer
Camera
Single-lens reflex camera
Tools
Hammer
Jackhammer
Sawing
Filing (rasp)
Sanding
Power tool
Drill
Explosion
Gunshot, gunfire
Machine gun
Fusillade
Artillery fire
Cap gun
Fireworks
Firecracker
Burst, pop
Eruption
Boom
Wood
Chop
Splinter
Crack
Glass
Chink, clink
Shatter
Liquid
Splash, splatter
Slosh
Squish
Drip
Pour
Trickle, dribble
Gush
Fill (with liquid)
Spray
Pump (liquid)
Stir
Boiling
Sonar
Arrow
Whoosh, swoosh, swish
Thump, thud
Thunk
Electronic tuner
Effects unit
Chorus effect
Basketball bounce
Bang
Slap, smack
Whack, thwack
Smash, crash
Breaking
Bouncing
Whip
Flap
Scratch
Scrape
Rub
Roll
Crushing
Crumpling, crinkling
Tearing
Beep, bleep
Ping
Ding
Clang
Squeal
Creak
Rustle
Whir
Clatter
Sizzle
Clicking
Clickety-clack
Rumble
Plop
Jingle, tinkle
Hum
Zing
Boing
Crunch
Silence
Sine wave
Harmonic
Chirp tone
Sound effect
Pulse
Inside, small room
Inside, large room or hall
Inside, public space
Outside, urban or manmade
Outside, rural or natural
Reverberation
Echo
Noise
Environmental noise
Static
Mains hum
Distortion
Sidetone
Cacophony
White noise
Pink noise
Throbbing
Vibration
Television
Radio
Field recording

@ -0,0 +1,112 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from typing import List
import numpy as np
import paddle
from paddleaudio.backends import load as load_audio
from paddleaudio.features import melspectrogram
from paddleaudio.models.panns import cnn14
from paddleaudio.utils import logger
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument('--device', choices=['cpu', 'gpu'], default='gpu', help='Select which device to predict, defaults to gpu.')
parser.add_argument('--wav', type=str, required=True, help='Audio file to infer.')
parser.add_argument('--sample_duration', type=float, default=2.0, help='Duration(in seconds) of tagging samples to predict.')
parser.add_argument('--hop_duration', type=float, default=0.3, help='Duration(in seconds) between two samples.')
parser.add_argument('--output_dir', type=str, default='./output_dir', help='Directory to save tagging result.')
args = parser.parse_args()
# yapf: enable
def split(waveform: np.ndarray, win_size: int, hop_size: int):
"""
Split into N waveforms.
N is decided by win_size and hop_size.
"""
assert isinstance(waveform, np.ndarray)
time = []
data = []
for i in range(0, len(waveform), hop_size):
segment = waveform[i:i + win_size]
if len(segment) < win_size:
segment = np.pad(segment, (0, win_size - len(segment)))
data.append(segment)
time.append(i / len(waveform))
return time, data
def batchify(data: List[List[float]],
sample_rate: int,
batch_size: int,
**kwargs):
"""
Extract features from waveforms and create batches.
"""
examples = []
for waveform in data:
feats = melspectrogram(waveform, sample_rate, **kwargs).transpose()
examples.append(feats)
# Seperates data into some batches.
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
yield one_batch
one_batch = []
if one_batch:
yield one_batch
def predict(model, data: List[List[float]], sample_rate: int,
batch_size: int=1):
"""
Use pretrained model to make predictions.
"""
batches = batchify(data, sample_rate, batch_size)
results = None
model.eval()
for batch in batches:
feats = paddle.to_tensor(batch).unsqueeze(1) \
# (batch_size, num_frames, num_melbins) -> (batch_size, 1, num_frames, num_melbins)
audioset_scores = model(feats)
if results is None:
results = audioset_scores.numpy()
else:
results = np.concatenate((results, audioset_scores.numpy()))
return results
if __name__ == '__main__':
paddle.set_device(args.device)
model = cnn14(pretrained=True, extract_embedding=False)
waveform, sr = load_audio(args.wav, sr=None)
time, data = split(waveform,
int(args.sample_duration * sr),
int(args.hop_duration * sr))
results = predict(model, data, sr, batch_size=8)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
time = np.arange(0, 1, int(args.hop_duration * sr) / len(waveform))
output_file = os.path.join(args.output_dir, f'audioset_tagging_sr_{sr}.npz')
np.savez(output_file, time=time, scores=results)
logger.info(f'Saved tagging results to {output_file}')

@ -0,0 +1,84 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import ast
import os
from typing import Dict
import numpy as np
from paddleaudio.utils import logger
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument('--tagging_file', type=str, required=True, help='')
parser.add_argument('--top_k', type=int, default=10, help='Get top k predicted results of audioset labels.')
parser.add_argument('--smooth', type=ast.literal_eval, default=True, help='Set "True" to apply posterior smoothing.')
parser.add_argument('--smooth_size', type=int, default=5, help='Window size of posterior smoothing.')
parser.add_argument('--label_file', type=str, default='./assets/audioset_labels.txt', help='File of audioset labels.')
parser.add_argument('--output_dir', type=str, default='./output_dir', help='Directory to save tagging labels.')
args = parser.parse_args()
# yapf: enable
def smooth(results: np.ndarray, win_size: int):
"""
Execute posterior smoothing in-place.
"""
for i in range(len(results) - 1, -1, -1):
if i < win_size - 1:
left = 0
else:
left = i + 1 - win_size
results[i] = np.sum(results[left:i + 1], axis=0) / (i - left + 1)
def generate_topk_label(k: int, label_map: Dict, result: np.ndarray):
"""
Return top k result.
"""
result = np.asarray(result)
topk_idx = (-result).argsort()[:k]
ret = ''
for idx in topk_idx:
label, score = label_map[idx], result[idx]
ret += f'{label}: {score}\n'
return ret
if __name__ == "__main__":
label_map = {}
with open(args.label_file, 'r') as f:
for i, l in enumerate(f.readlines()):
label_map[i] = l.strip()
results = np.load(args.tagging_file, allow_pickle=True)
times, scores = results['time'], results['scores']
if args.smooth:
logger.info('Posterior smoothing...')
smooth(scores, win_size=args.smooth_size)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
output_file = os.path.join(
args.output_dir,
os.path.basename(args.tagging_file).split('.')[0] + '.txt')
with open(output_file, 'w') as f:
for time, score in zip(times, scores):
f.write(f'{time}\n')
f.write(generate_topk_label(args.top_k, label_map, score) + '\n')
logger.info(f'Saved tagging labels to {output_file}')

@ -0,0 +1,116 @@
# 声音分类
声音分类和检测是声音算法的一个热门研究方向。
对于声音分类任务传统机器学习的一个常用做法是首先人工提取音频的时域和频域的多种特征并做特征选择、组合、变换等然后基于SVM或决策树进行分类。而端到端的深度学习则通常利用深度网络如RNNCNN等直接对声间波形(waveform)或时频特征(time-frequency)进行特征学习(representation learning)和分类预测。
在IEEE ICASSP 2017 大会上,谷歌开放了一个大规模的音频数据集[Audioset](https://research.google.com/audioset/)。该数据集包含了 632 类的音频类别以及 2,084,320 条人工标记的每段 10 秒长度的声音剪辑片段来源于YouTube视频。目前该数据集已经有210万个已标注的视频数据5800小时的音频数据经过标记的声音样本的标签类别为527。
`PANNs`([PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition](https://arxiv.org/pdf/1912.10211.pdf))是基于Audioset数据集训练的声音分类/识别的模型。经过预训练后模型可以用于提取音频的embbedding。本示例将使用`PANNs`的预训练模型Finetune完成声音分类的任务。
## 模型简介
PaddleAudio提供了PANNs的CNN14、CNN10和CNN6的预训练模型可供用户选择使用
- CNN14: 该模型主要包含12个卷积层和2个全连接层模型参数的数量为79.6Membbedding维度是2048。
- CNN10: 该模型主要包含8个卷积层和2个全连接层模型参数的数量为4.9Membbedding维度是512。
- CNN6: 该模型主要包含4个卷积层和2个全连接层模型参数的数量为4.5Membbedding维度是512。
## 快速开始
### 模型训练
以环境声音分类数据集`ESC50`为示例运行下面的命令可在训练集上进行模型的finetune支持单机的单卡训练和多卡训练。关于如何使用`paddle.distributed.launch`启动多卡训练,请查看[单机多卡训练](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/02_paddle2.0_develop/06_device_cn.html)。
单卡训练:
```shell
$ python train.py --epochs 50 --batch_size 16 --checkpoint_dir ./checkpoint --save_freq 10
```
多卡训练:
```shell
$ unset CUDA_VISIBLE_DEVICES
$ python -m paddle.distributed.launch --gpus "0,1" train.py --epochs 50 --batch_size 16 --num_worker 4 --checkpoint_dir ./checkpoint --save_freq 10
```
可支持配置的参数:
- `device`: 选用什么设备进行训练可选cpu或gpu默认为gpu。如使用gpu训练则参数gpus指定GPU卡号。
- `epochs`: 训练轮次默认为50。
- `learning_rate`: Fine-tune的学习率默认为5e-5。
- `batch_size`: 批处理大小请结合显存情况进行调整若出现显存不足请适当调低这一参数默认为16。
- `num_workers`: Dataloader获取数据的子进程数。默认为0加载数据的流程在主进程执行。
- `checkpoint_dir`: 模型参数文件和optimizer参数文件的保存目录默认为`./checkpoint`。
- `save_freq`: 训练过程中的模型保存频率默认为10。
- `log_freq`: 训练过程中的信息打印频率默认为10。
示例代码中使用的预训练模型为`CNN14`,如果想更换为其他预训练模型,可通过以下方式执行:
```python
from model import SoundClassifier
from paddleaudio.datasets import ESC50
from paddleaudio.models.panns import cnn14, cnn10, cnn6
# CNN14
backbone = cnn14(pretrained=True, extract_embedding=True)
model = SoundClassifier(backbone, num_class=len(ESC50.label_list))
# CNN10
backbone = cnn10(pretrained=True, extract_embedding=True)
model = SoundClassifier(backbone, num_class=len(ESC50.label_list))
# CNN6
backbone = cnn6(pretrained=True, extract_embedding=True)
model = SoundClassifier(backbone, num_class=len(ESC50.label_list))
```
### 模型预测
```shell
python -u predict.py --wav ./dog.wav --top_k 3 --checkpoint ./checkpoint/epoch_50/model.pdparams
```
可支持配置的参数:
- `device`: 选用什么设备进行训练可选cpu或gpu默认为gpu。如使用gpu训练则参数gpus指定GPU卡号。
- `wav`: 指定预测的音频文件。
- `top_k`: 预测显示的top k标签的得分默认为1。
- `checkpoint`: 模型参数checkpoint文件。
输出的预测结果如下:
```
[/audio/dog.wav]
Dog: 0.9999538660049438
Clock tick: 1.3341237718123011e-05
Cat: 6.579841738130199e-06
```
### 模型部署
#### 1. 动转静
模型训练结束后,可以将已保存的动态图参数导出成静态图的模型和参数,然后实施静态图的部署。
```shell
python -u export_model.py --checkpoint ./checkpoint/epoch_50/model.pdparams --output_dir ./export
```
可支持配置的参数:
- `checkpoint`: 模型参数checkpoint文件。
- `output_dir`: 导出静态图模型和参数文件的保存目录。
导出的静态图模型和参数文件如下:
```sh
$ tree export
export
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
```
#### 2. 模型部署和预测
`deploy/python/predict.py` 脚本使用了`paddle.inference`模块下的api提供了python端部署的示例
```sh
python deploy/python/predict.py --model_dir ./export --device gpu
```

@ -0,0 +1,147 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import numpy as np
from paddle import inference
from scipy.special import softmax
from paddleaudio.backends import load as load_audio
from paddleaudio.datasets import ESC50
from paddleaudio.features import melspectrogram
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", type=str, required=True, default="./export", help="The directory to static model.")
parser.add_argument("--batch_size", type=int, default=2, help="Batch size per GPU/CPU for training.")
parser.add_argument('--device', choices=['cpu', 'gpu', 'xpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument('--use_tensorrt', type=eval, default=False, choices=[True, False], help='Enable to use tensorrt to speed up.')
parser.add_argument("--precision", type=str, default="fp32", choices=["fp32", "fp16"], help='The tensorrt precision.')
parser.add_argument('--cpu_threads', type=int, default=10, help='Number of threads to predict when using cpu.')
parser.add_argument('--enable_mkldnn', type=eval, default=False, choices=[True, False], help='Enable to use mkldnn to speed up when using cpu.')
parser.add_argument("--log_dir", type=str, default="./log", help="The path to save log.")
args = parser.parse_args()
# yapf: enable
def extract_features(files: str, **kwargs):
waveforms = []
srs = []
max_length = float('-inf')
for file in files:
waveform, sr = load_audio(file, sr=None)
max_length = max(max_length, len(waveform))
waveforms.append(waveform)
srs.append(sr)
feats = []
for i in range(len(waveforms)):
# padding
if len(waveforms[i]) < max_length:
pad_width = max_length - len(waveforms[i])
waveforms[i] = np.pad(waveforms[i], pad_width=(0, pad_width))
feat = melspectrogram(waveforms[i], sr, **kwargs).transpose()
feats.append(feat)
return np.stack(feats, axis=0)
class Predictor(object):
def __init__(self,
model_dir,
device="gpu",
batch_size=1,
use_tensorrt=False,
precision="fp32",
cpu_threads=10,
enable_mkldnn=False):
self.batch_size = batch_size
model_file = os.path.join(model_dir, "inference.pdmodel")
params_file = os.path.join(model_dir, "inference.pdiparams")
assert os.path.isfile(model_file) and os.path.isfile(
params_file), 'Please check model and parameter files.'
config = inference.Config(model_file, params_file)
if device == "gpu":
# set GPU configs accordingly
# such as intialize the gpu memory, enable tensorrt
config.enable_use_gpu(100, 0)
precision_map = {
"fp16": inference.PrecisionType.Half,
"fp32": inference.PrecisionType.Float32,
}
precision_mode = precision_map[precision]
if use_tensorrt:
config.enable_tensorrt_engine(
max_batch_size=batch_size,
min_subgraph_size=30,
precision_mode=precision_mode)
elif device == "cpu":
# set CPU configs accordingly,
# such as enable_mkldnn, set_cpu_math_library_num_threads
config.disable_gpu()
if enable_mkldnn:
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
config.set_cpu_math_library_num_threads(cpu_threads)
elif device == "xpu":
# set XPU configs accordingly
config.enable_xpu(100)
config.switch_use_feed_fetch_ops(False)
self.predictor = inference.create_predictor(config)
self.input_handles = [
self.predictor.get_input_handle(name)
for name in self.predictor.get_input_names()
]
self.output_handle = self.predictor.get_output_handle(
self.predictor.get_output_names()[0])
def predict(self, wavs):
feats = extract_features(wavs)
self.input_handles[0].copy_from_cpu(feats)
self.predictor.run()
logits = self.output_handle.copy_to_cpu()
probs = softmax(logits, axis=1)
indices = np.argmax(probs, axis=1)
return indices
if __name__ == "__main__":
# Define predictor to do prediction.
predictor = Predictor(args.model_dir, args.device, args.batch_size,
args.use_tensorrt, args.precision, args.cpu_threads,
args.enable_mkldnn)
wavs = [
'~/audio_demo_resource/cat.wav',
'~/audio_demo_resource/dog.wav',
]
for i in range(len(wavs)):
wavs[i] = os.path.abspath(os.path.expanduser(wavs[i]))
assert os.path.isfile(
wavs[i]), f'Please check input wave file: {wavs[i]}'
results = predictor.predict(wavs)
for idx, wav in enumerate(wavs):
print(f'Wav: {wav} \t Label: {ESC50.label_list[results[idx]]}')

@ -0,0 +1,45 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from model import SoundClassifier
from paddleaudio.datasets import ESC50
from paddleaudio.models.panns import cnn14
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--checkpoint", type=str, required=True, help="Checkpoint of model.")
parser.add_argument("--output_dir", type=str, default='./export', help="Path to save static model and its parameters.")
args = parser.parse_args()
# yapf: enable
if __name__ == '__main__':
model = SoundClassifier(
backbone=cnn14(pretrained=False, extract_embedding=True),
num_class=len(ESC50.label_list))
model.set_state_dict(paddle.load(args.checkpoint))
model.eval()
model = paddle.jit.to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None, None, 64], dtype=paddle.float32)
])
# Save in static graph model.
paddle.jit.save(model, os.path.join(args.output_dir, "inference"))

@ -0,0 +1,36 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
class SoundClassifier(nn.Layer):
"""
Model for sound classification which uses panns pretrained models to extract
embeddings from audio files.
"""
def __init__(self, backbone, num_class, dropout=0.1):
super(SoundClassifier, self).__init__()
self.backbone = backbone
self.dropout = nn.Dropout(dropout)
self.fc = nn.Linear(self.backbone.emb_size, num_class)
def forward(self, x):
# x: (batch_size, num_frames, num_melbins) -> (batch_size, 1, num_frames, num_melbins)
x = x.unsqueeze(1)
x = self.backbone(x)
x = self.dropout(x)
logits = self.fc(x)
return logits

@ -0,0 +1,61 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
import paddle
import paddle.nn.functional as F
from model import SoundClassifier
from paddleaudio.backends import load as load_audio
from paddleaudio.datasets import ESC50
from paddleaudio.features import melspectrogram
from paddleaudio.models.panns import cnn14
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to predict, defaults to gpu.")
parser.add_argument("--wav", type=str, required=True, help="Audio file to infer.")
parser.add_argument("--top_k", type=int, default=1, help="Show top k predicted results")
parser.add_argument("--checkpoint", type=str, required=True, help="Checkpoint of model.")
args = parser.parse_args()
# yapf: enable
def extract_features(file: str, **kwargs):
waveform, sr = load_audio(file, sr=None)
feat = melspectrogram(waveform, sr, **kwargs).transpose()
return feat
if __name__ == '__main__':
paddle.set_device(args.device)
model = SoundClassifier(
backbone=cnn14(pretrained=False, extract_embedding=True),
num_class=len(ESC50.label_list))
model.set_state_dict(paddle.load(args.checkpoint))
model.eval()
feat = np.expand_dims(extract_features(args.wav), 0)
feat = paddle.to_tensor(feat)
logits = model(feat)
probs = F.softmax(logits, axis=1).numpy()
sorted_indices = (-probs[0]).argsort()
msg = f'[{args.wav}]\n'
for idx in sorted_indices[:args.top_k]:
msg += f'{ESC50.label_list[idx]}: {probs[0][idx]}\n'
print(msg)

@ -0,0 +1,149 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from model import SoundClassifier
from paddleaudio.datasets import ESC50
from paddleaudio.models.panns import cnn14
from paddleaudio.utils import logger
from paddleaudio.utils import Timer
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--epochs", type=int, default=50, help="Number of epoches for fine-tuning.")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--batch_size", type=int, default=16, help="Total examples' number in batch for training.")
parser.add_argument("--num_workers", type=int, default=0, help="Number of workers in dataloader.")
parser.add_argument("--checkpoint_dir", type=str, default='./checkpoint', help="Directory to save model checkpoints.")
parser.add_argument("--save_freq", type=int, default=10, help="Save checkpoint every n epoch.")
parser.add_argument("--log_freq", type=int, default=10, help="Log the training infomation every n steps.")
args = parser.parse_args()
# yapf: enable
if __name__ == "__main__":
paddle.set_device(args.device)
nranks = paddle.distributed.get_world_size()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
local_rank = paddle.distributed.get_rank()
backbone = cnn14(pretrained=True, extract_embedding=True)
model = SoundClassifier(backbone, num_class=len(ESC50.label_list))
model = paddle.DataParallel(model)
optimizer = paddle.optimizer.Adam(
learning_rate=args.learning_rate, parameters=model.parameters())
criterion = paddle.nn.loss.CrossEntropyLoss()
train_ds = ESC50(mode='train', feat_type='melspectrogram')
dev_ds = ESC50(mode='dev', feat_type='melspectrogram')
train_sampler = paddle.io.DistributedBatchSampler(
train_ds, batch_size=args.batch_size, shuffle=True, drop_last=False)
train_loader = paddle.io.DataLoader(
train_ds,
batch_sampler=train_sampler,
num_workers=args.num_workers,
return_list=True,
use_buffer_reader=True, )
steps_per_epoch = len(train_sampler)
timer = Timer(steps_per_epoch * args.epochs)
timer.start()
for epoch in range(1, args.epochs + 1):
model.train()
avg_loss = 0
num_corrects = 0
num_samples = 0
for batch_idx, batch in enumerate(train_loader):
feats, labels = batch
logits = model(feats)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
if isinstance(optimizer._learning_rate,
paddle.optimizer.lr.LRScheduler):
optimizer._learning_rate.step()
optimizer.clear_grad()
# Calculate loss
avg_loss += loss.numpy()[0]
# Calculate metrics
preds = paddle.argmax(logits, axis=1)
num_corrects += (preds == labels).numpy().sum()
num_samples += feats.shape[0]
timer.count()
if (batch_idx + 1) % args.log_freq == 0 and local_rank == 0:
lr = optimizer.get_lr()
avg_loss /= args.log_freq
avg_acc = num_corrects / num_samples
print_msg = 'Epoch={}/{}, Step={}/{}'.format(
epoch, args.epochs, batch_idx + 1, steps_per_epoch)
print_msg += ' loss={:.4f}'.format(avg_loss)
print_msg += ' acc={:.4f}'.format(avg_acc)
print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format(
lr, timer.timing, timer.eta)
logger.train(print_msg)
avg_loss = 0
num_corrects = 0
num_samples = 0
if epoch % args.save_freq == 0 and batch_idx + 1 == steps_per_epoch and local_rank == 0:
dev_sampler = paddle.io.BatchSampler(
dev_ds,
batch_size=args.batch_size,
shuffle=False,
drop_last=False)
dev_loader = paddle.io.DataLoader(
dev_ds,
batch_sampler=dev_sampler,
num_workers=args.num_workers,
return_list=True, )
model.eval()
num_corrects = 0
num_samples = 0
with logger.processing('Evaluation on validation dataset'):
for batch_idx, batch in enumerate(dev_loader):
feats, labels = batch
logits = model(feats)
preds = paddle.argmax(logits, axis=1)
num_corrects += (preds == labels).numpy().sum()
num_samples += feats.shape[0]
print_msg = '[Evaluation result]'
print_msg += ' dev_acc={:.4f}'.format(num_corrects / num_samples)
logger.eval(print_msg)
# Save model
save_dir = os.path.join(args.checkpoint_dir,
'epoch_{}'.format(epoch))
logger.info('Saving model checkpoint to {}'.format(save_dir))
paddle.save(model.state_dict(),
os.path.join(save_dir, 'model.pdparams'))
paddle.save(optimizer.state_dict(),
os.path.join(save_dir, 'model.pdopt'))

@ -0,0 +1,15 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .backends import *
from .features import *

@ -0,0 +1,14 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .audio import *

@ -0,0 +1,303 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Optional
from typing import Tuple
from typing import Union
import numpy as np
import resampy
import soundfile as sf
from numpy import ndarray as array
from scipy.io import wavfile
from ..utils import ParameterError
__all__ = [
'resample',
'to_mono',
'depth_convert',
'normalize',
'save_wav',
'load',
]
NORMALMIZE_TYPES = ['linear', 'gaussian']
MERGE_TYPES = ['ch0', 'ch1', 'random', 'average']
RESAMPLE_MODES = ['kaiser_best', 'kaiser_fast']
EPS = 1e-8
def resample(y: array, src_sr: int, target_sr: int,
mode: str='kaiser_fast') -> array:
""" Audio resampling
This function is the same as using resampy.resample().
Notes:
The default mode is kaiser_fast. For better audio quality, use mode = 'kaiser_fast'
"""
if mode == 'kaiser_best':
warnings.warn(
f'Using resampy in kaiser_best to {src_sr}=>{target_sr}. This function is pretty slow, \
we recommend the mode kaiser_fast in large scale audio trainning')
if not isinstance(y, np.ndarray):
raise ParameterError(
'Only support numpy array, but received y in {type(y)}')
if mode not in RESAMPLE_MODES:
raise ParameterError(f'resample mode must in {RESAMPLE_MODES}')
return resampy.resample(y, src_sr, target_sr, filter=mode)
def to_mono(y: array, merge_type: str='average') -> array:
""" convert sterior audio to mono
"""
if merge_type not in MERGE_TYPES:
raise ParameterError(
f'Unsupported merge type {merge_type}, available types are {MERGE_TYPES}'
)
if y.ndim > 2:
raise ParameterError(
f'Unsupported audio array, y.ndim > 2, the shape is {y.shape}')
if y.ndim == 1: # nothing to merge
return y
if merge_type == 'ch0':
return y[0]
if merge_type == 'ch1':
return y[1]
if merge_type == 'random':
return y[np.random.randint(0, 2)]
# need to do averaging according to dtype
if y.dtype == 'float32':
y_out = (y[0] + y[1]) * 0.5
elif y.dtype == 'int16':
y_out = y.astype('int32')
y_out = (y_out[0] + y_out[1]) // 2
y_out = np.clip(y_out, np.iinfo(y.dtype).min,
np.iinfo(y.dtype).max).astype(y.dtype)
elif y.dtype == 'int8':
y_out = y.astype('int16')
y_out = (y_out[0] + y_out[1]) // 2
y_out = np.clip(y_out, np.iinfo(y.dtype).min,
np.iinfo(y.dtype).max).astype(y.dtype)
else:
raise ParameterError(f'Unsupported dtype: {y.dtype}')
return y_out
def _safe_cast(y: array, dtype: Union[type, str]) -> array:
""" data type casting in a safe way, i.e., prevent overflow or underflow
This function is used internally.
"""
return np.clip(y, np.iinfo(dtype).min, np.iinfo(dtype).max).astype(dtype)
def depth_convert(y: array, dtype: Union[type, str],
dithering: bool=True) -> array:
"""Convert audio array to target dtype safely
This function convert audio waveform to a target dtype, with addition steps of
preventing overflow/underflow and preserving audio range.
"""
SUPPORT_DTYPE = ['int16', 'int8', 'float32', 'float64']
if y.dtype not in SUPPORT_DTYPE:
raise ParameterError(
'Unsupported audio dtype, '
f'y.dtype is {y.dtype}, supported dtypes are {SUPPORT_DTYPE}')
if dtype not in SUPPORT_DTYPE:
raise ParameterError(
'Unsupported audio dtype, '
f'target dtype is {dtype}, supported dtypes are {SUPPORT_DTYPE}')
if dtype == y.dtype:
return y
if dtype == 'float64' and y.dtype == 'float32':
return _safe_cast(y, dtype)
if dtype == 'float32' and y.dtype == 'float64':
return _safe_cast(y, dtype)
if dtype == 'int16' or dtype == 'int8':
if y.dtype in ['float64', 'float32']:
factor = np.iinfo(dtype).max
y = np.clip(y * factor, np.iinfo(dtype).min,
np.iinfo(dtype).max).astype(dtype)
y = y.astype(dtype)
else:
if dtype == 'int16' and y.dtype == 'int8':
factor = np.iinfo('int16').max / np.iinfo('int8').max - EPS
y = y.astype('float32') * factor
y = y.astype('int16')
else: # dtype == 'int8' and y.dtype=='int16':
y = y.astype('int32') * np.iinfo('int8').max / \
np.iinfo('int16').max
y = y.astype('int8')
if dtype in ['float32', 'float64']:
org_dtype = y.dtype
y = y.astype(dtype) / np.iinfo(org_dtype).max
return y
def sound_file_load(file: str,
offset: Optional[float]=None,
dtype: str='int16',
duration: Optional[int]=None) -> Tuple[array, int]:
"""Load audio using soundfile library
This function load audio file using libsndfile.
Reference:
http://www.mega-nerd.com/libsndfile/#Features
"""
with sf.SoundFile(file) as sf_desc:
sr_native = sf_desc.samplerate
if offset:
sf_desc.seek(int(offset * sr_native))
if duration is not None:
frame_duration = int(duration * sr_native)
else:
frame_duration = -1
y = sf_desc.read(frames=frame_duration, dtype=dtype, always_2d=False).T
return y, sf_desc.samplerate
def audio_file_load():
"""Load audio using audiofile library
This function load audio file using audiofile.
Reference:
https://audiofile.68k.org/
"""
raise NotImplementedError()
def sox_file_load():
"""Load audio using sox library
This function load audio file using sox.
Reference:
http://sox.sourceforge.net/
"""
raise NotImplementedError()
def normalize(y: array, norm_type: str='linear',
mul_factor: float=1.0) -> array:
""" normalize an input audio with additional multiplier.
"""
if norm_type == 'linear':
amax = np.max(np.abs(y))
factor = 1.0 / (amax + EPS)
y = y * factor * mul_factor
elif norm_type == 'gaussian':
amean = np.mean(y)
astd = np.std(y)
astd = max(astd, EPS)
y = mul_factor * (y - amean) / astd
else:
raise NotImplementedError(f'norm_type should be in {NORMALMIZE_TYPES}')
return y
def save_wav(y: array, sr: int, file: str) -> None:
"""Save audio file to disk.
This function saves audio to disk using scipy.io.wavfile, with additional step
to convert input waveform to int16 unless it already is int16
Notes:
It only support raw wav format.
"""
if not file.endswith('.wav'):
raise ParameterError(
f'only .wav file supported, but dst file name is: {file}')
if sr <= 0:
raise ParameterError(
f'Sample rate should be larger than 0, recieved sr = {sr}')
if y.dtype not in ['int16', 'int8']:
warnings.warn(
f'input data type is {y.dtype}, will convert data to int16 format before saving'
)
y_out = depth_convert(y, 'int16')
else:
y_out = y
wavfile.write(file, sr, y_out)
def load(
file: str,
sr: Optional[int]=None,
mono: bool=True,
merge_type: str='average', # ch0,ch1,random,average
normal: bool=True,
norm_type: str='linear',
norm_mul_factor: float=1.0,
offset: float=0.0,
duration: Optional[int]=None,
dtype: str='float32',
resample_mode: str='kaiser_fast') -> Tuple[array, int]:
"""Load audio file from disk.
This function loads audio from disk using using audio beackend.
Parameters:
Notes:
"""
y, r = sound_file_load(file, offset=offset, dtype=dtype, duration=duration)
if not ((y.ndim == 1 and len(y) > 0) or (y.ndim == 2 and len(y[0]) > 0)):
raise ParameterError(f'audio file {file} looks empty')
if mono:
y = to_mono(y, merge_type)
if sr is not None and sr != r:
y = resample(y, r, sr, mode=resample_mode)
r = sr
if normal:
y = normalize(y, norm_type, norm_mul_factor)
elif dtype in ['int8', 'int16']:
# still need to do normalization, before depth convertion
y = normalize(y, 'linear', 1.0)
y = depth_convert(y, dtype)
return y, r

@ -0,0 +1,34 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .aishell import AISHELL1
from .dcase import UrbanAcousticScenes
from .dcase import UrbanAudioVisualScenes
from .esc50 import ESC50
from .gtzan import GTZAN
from .librispeech import LIBRISPEECH
from .ravdess import RAVDESS
from .tess import TESS
from .urban_sound import UrbanSound8K
__all__ = [
'AISHELL1',
'LIBRISPEECH',
'ESC50',
'UrbanSound8K',
'GTZAN',
'UrbanAcousticScenes',
'UrbanAudioVisualScenes',
'RAVDESS',
'TESS',
]

@ -0,0 +1,154 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import codecs
import collections
import json
import os
from typing import Dict
from paddle.io import Dataset
from tqdm import tqdm
from ..backends import load as load_audio
from ..utils.download import decompress
from ..utils.download import download_and_decompress
from ..utils.env import DATA_HOME
from ..utils.log import logger
from .dataset import feat_funcs
__all__ = ['AISHELL1']
class AISHELL1(Dataset):
"""
This Open Source Mandarin Speech Corpus, AISHELL-ASR0009-OS1, is 178 hours long.
It is a part of AISHELL-ASR0009, of which utterance contains 11 domains, including
smart home, autonomous driving, and industrial production. The whole recording was
put in quiet indoor environment, using 3 different devices at the same time: high
fidelity microphone (44.1kHz, 16-bit,); Android-system mobile phone (16kHz, 16-bit),
iOS-system mobile phone (16kHz, 16-bit). Audios in high fidelity were re-sampled
to 16kHz to build AISHELL- ASR0009-OS1. 400 speakers from different accent areas
in China were invited to participate in the recording. The manual transcription
accuracy rate is above 95%, through professional speech annotation and strict
quality inspection. The corpus is divided into training, development and testing
sets.
Reference:
AISHELL-1: An Open-Source Mandarin Speech Corpus and A Speech Recognition Baseline
https://arxiv.org/abs/1709.05522
"""
archieves = [
{
'url': 'http://www.openslr.org/resources/33/data_aishell.tgz',
'md5': '2f494334227864a8a8fec932999db9d8',
},
]
text_meta = os.path.join('data_aishell', 'transcript',
'aishell_transcript_v0.8.txt')
utt_info = collections.namedtuple('META_INFO',
('file_path', 'utt_id', 'text'))
audio_path = os.path.join('data_aishell', 'wav')
manifest_path = os.path.join('data_aishell', 'manifest')
subset = ['train', 'dev', 'test']
def __init__(self, subset: str='train', feat_type: str='raw', **kwargs):
assert subset in self.subset, 'Dataset subset must be one in {}, but got {}'.format(
self.subset, subset)
self.subset = subset
self.feat_type = feat_type
self.feat_config = kwargs
self._data = self._get_data()
super(AISHELL1, self).__init__()
def _get_text_info(self) -> Dict[str, str]:
ret = {}
with open(os.path.join(DATA_HOME, self.text_meta), 'r') as rf:
for line in rf.readlines()[1:]:
utt_id, text = map(str.strip, line.split(' ',
1)) # utt_id, text
ret.update({utt_id: ''.join(text.split())})
return ret
def _get_data(self):
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
not os.path.isfile(os.path.join(DATA_HOME, self.text_meta)):
download_and_decompress(self.archieves, DATA_HOME)
# Extract *wav from *.tar.gz.
for root, _, files in os.walk(
os.path.join(DATA_HOME, self.audio_path)):
for file in files:
if file.endswith('.tar.gz'):
decompress(os.path.join(root, file))
os.remove(os.path.join(root, file))
text_info = self._get_text_info()
data = []
for root, _, files in os.walk(
os.path.join(DATA_HOME, self.audio_path, self.subset)):
for file in files:
if file.endswith('.wav'):
utt_id = os.path.splitext(file)[0]
if utt_id not in text_info: # There are some utt_id that without label
continue
text = text_info[utt_id]
file_path = os.path.join(root, file)
data.append(self.utt_info(file_path, utt_id, text))
return data
def _convert_to_record(self, idx: int):
sample = self._data[idx]
record = {}
# To show all fields in a namedtuple: `type(sample)._fields`
for field in type(sample)._fields:
record[field] = getattr(sample, field)
waveform, sr = load_audio(
sample[0]) # The first element of sample is file path
feat_func = feat_funcs[self.feat_type]
feat = feat_func(
waveform, sample_rate=sr,
**self.feat_config) if feat_func else waveform
record.update({'feat': feat, 'duration': len(waveform) / sr})
return record
def create_manifest(self, prefix='manifest'):
if not os.path.isdir(os.path.join(DATA_HOME, self.manifest_path)):
os.makedirs(os.path.join(DATA_HOME, self.manifest_path))
manifest_file = os.path.join(DATA_HOME, self.manifest_path,
f'{prefix}.{self.subset}')
with codecs.open(manifest_file, 'w', 'utf-8') as f:
for idx in tqdm(range(len(self))):
record = self._convert_to_record(idx)
record_line = json.dumps(
{
'utt': record['utt_id'],
'feat': record['file_path'],
'feat_shape': (record['duration'], ),
'text': record['text']
},
ensure_ascii=False)
f.write(record_line + '\n')
logger.info(f'Manifest file {manifest_file} created.')
def __getitem__(self, idx):
record = self._convert_to_record(idx)
return tuple(record.values())
def __len__(self):
return len(self._data)

@ -0,0 +1,82 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import numpy as np
import paddle
from ..backends import load as load_audio
from ..features import melspectrogram
from ..features import mfcc
feat_funcs = {
'raw': None,
'melspectrogram': melspectrogram,
'mfcc': mfcc,
}
class AudioClassificationDataset(paddle.io.Dataset):
"""
Base class of audio classification dataset.
"""
def __init__(self,
files: List[str],
labels: List[int],
feat_type: str='raw',
**kwargs):
"""
Ags:
files (:obj:`List[str]`): A list of absolute path of audio files.
labels (:obj:`List[int]`): Labels of audio files.
feat_type (:obj:`str`, `optional`, defaults to `raw`):
It identifies the feature type that user wants to extrace of an audio file.
"""
super(AudioClassificationDataset, self).__init__()
if feat_type not in feat_funcs.keys():
raise RuntimeError(
f"Unknown feat_type: {feat_type}, it must be one in {list(feat_funcs.keys())}"
)
self.files = files
self.labels = labels
self.feat_type = feat_type
self.feat_config = kwargs # Pass keyword arguments to customize feature config
def _get_data(self, input_file: str):
raise NotImplementedError
def _convert_to_record(self, idx):
file, label = self.files[idx], self.labels[idx]
waveform, sample_rate = load_audio(file)
feat_func = feat_funcs[self.feat_type]
record = {}
record['feat'] = feat_func(
waveform, sample_rate,
**self.feat_config) if feat_func else waveform
record['label'] = label
return record
def __getitem__(self, idx):
record = self._convert_to_record(idx)
return np.array(record['feat']).transpose(), np.array(
record['label'], dtype=np.int64)
def __len__(self):
return len(self.files)

@ -0,0 +1,298 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
from typing import List
from typing import Tuple
from ..utils.download import download_and_decompress
from ..utils.env import DATA_HOME
from .dataset import AudioClassificationDataset
__all__ = ['UrbanAcousticScenes', 'UrbanAudioVisualScenes']
class UrbanAcousticScenes(AudioClassificationDataset):
"""
TAU Urban Acoustic Scenes 2020 Mobile Development dataset contains recordings from
12 European cities in 10 different acoustic scenes using 4 different devices.
Additionally, synthetic data for 11 mobile devices was created based on the original
recordings. Of the 12 cities, two are present only in the evaluation set.
Reference:
A multi-device dataset for urban acoustic scene classification
https://arxiv.org/abs/1807.09840
"""
source_url = 'https://zenodo.org/record/3819968/files/'
base_name = 'TAU-urban-acoustic-scenes-2020-mobile-development'
archieves = [
{
'url': source_url + base_name + '.meta.zip',
'md5': '6eae9db553ce48e4ea246e34e50a3cf5',
},
{
'url': source_url + base_name + '.audio.1.zip',
'md5': 'b1e85b8a908d3d6a6ab73268f385d5c8',
},
{
'url': source_url + base_name + '.audio.2.zip',
'md5': '4310a13cc2943d6ce3f70eba7ba4c784',
},
{
'url': source_url + base_name + '.audio.3.zip',
'md5': 'ed38956c4246abb56190c1e9b602b7b8',
},
{
'url': source_url + base_name + '.audio.4.zip',
'md5': '97ab8560056b6816808dedc044dcc023',
},
{
'url': source_url + base_name + '.audio.5.zip',
'md5': 'b50f5e0bfed33cd8e52cb3e7f815c6cb',
},
{
'url': source_url + base_name + '.audio.6.zip',
'md5': 'fbf856a3a86fff7520549c899dc94372',
},
{
'url': source_url + base_name + '.audio.7.zip',
'md5': '0dbffe7b6e45564da649378723284062',
},
{
'url': source_url + base_name + '.audio.8.zip',
'md5': 'bb6f77832bf0bd9f786f965beb251b2e',
},
{
'url': source_url + base_name + '.audio.9.zip',
'md5': 'a65596a5372eab10c78e08a0de797c9e',
},
{
'url': source_url + base_name + '.audio.10.zip',
'md5': '2ad595819ffa1d56d2de4c7ed43205a6',
},
{
'url': source_url + base_name + '.audio.11.zip',
'md5': '0ad29f7040a4e6a22cfd639b3a6738e5',
},
{
'url': source_url + base_name + '.audio.12.zip',
'md5': 'e5f4400c6b9697295fab4cf507155a2f',
},
{
'url': source_url + base_name + '.audio.13.zip',
'md5': '8855ab9f9896422746ab4c5d89d8da2f',
},
{
'url': source_url + base_name + '.audio.14.zip',
'md5': '092ad744452cd3e7de78f988a3d13020',
},
{
'url': source_url + base_name + '.audio.15.zip',
'md5': '4b5eb85f6592aebf846088d9df76b420',
},
{
'url': source_url + base_name + '.audio.16.zip',
'md5': '2e0a89723e58a3836be019e6996ae460',
},
]
label_list = [
'airport', 'shopping_mall', 'metro_station', 'street_pedestrian',
'public_square', 'street_traffic', 'tram', 'bus', 'metro', 'park'
]
meta = os.path.join(base_name, 'meta.csv')
meta_info = collections.namedtuple('META_INFO', (
'filename', 'scene_label', 'identifier', 'source_label'))
subset_meta = {
'train': os.path.join(base_name, 'evaluation_setup', 'fold1_train.csv'),
'dev':
os.path.join(base_name, 'evaluation_setup', 'fold1_evaluate.csv'),
'test': os.path.join(base_name, 'evaluation_setup', 'fold1_test.csv'),
}
subset_meta_info = collections.namedtuple('SUBSET_META_INFO',
('filename', 'scene_label'))
audio_path = os.path.join(base_name, 'audio')
def __init__(self, mode: str='train', feat_type: str='raw', **kwargs):
"""
Ags:
mode (:obj:`str`, `optional`, defaults to `train`):
It identifies the dataset mode (train or dev).
feat_type (:obj:`str`, `optional`, defaults to `raw`):
It identifies the feature type that user wants to extrace of an audio file.
"""
files, labels = self._get_data(mode)
super(UrbanAcousticScenes, self).__init__(
files=files, labels=labels, feat_type=feat_type, **kwargs)
def _get_meta_info(self, subset: str=None,
skip_header: bool=True) -> List[collections.namedtuple]:
if subset is None:
meta_file = self.meta
meta_info = self.meta_info
else:
assert subset in self.subset_meta, f'Subset must be one in {list(self.subset_meta.keys())}, but got {subset}.'
meta_file = self.subset_meta[subset]
meta_info = self.subset_meta_info
ret = []
with open(os.path.join(DATA_HOME, meta_file), 'r') as rf:
lines = rf.readlines()[1:] if skip_header else rf.readlines()
for line in lines:
ret.append(meta_info(*line.strip().split('\t')))
return ret
def _get_data(self, mode: str) -> Tuple[List[str], List[int]]:
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
not os.path.isfile(os.path.join(DATA_HOME, self.meta)):
download_and_decompress(self.archieves, DATA_HOME)
meta_info = self._get_meta_info(subset=mode, skip_header=True)
files = []
labels = []
for sample in meta_info:
filename, label = sample[:2]
filename = os.path.basename(filename)
target = self.label_list.index(label)
files.append(os.path.join(DATA_HOME, self.audio_path, filename))
labels.append(int(target))
return files, labels
class UrbanAudioVisualScenes(AudioClassificationDataset):
"""
TAU Urban Audio Visual Scenes 2021 Development dataset contains synchronized audio
and video recordings from 12 European cities in 10 different scenes.
This dataset consists of 10-seconds audio and video segments from 10
acoustic scenes. The total amount of audio in the development set is 34 hours.
Reference:
A Curated Dataset of Urban Scenes for Audio-Visual Scene Analysis
https://arxiv.org/abs/2011.00030
"""
source_url = 'https://zenodo.org/record/4477542/files/'
base_name = 'TAU-urban-audio-visual-scenes-2021-development'
archieves = [
{
'url': source_url + base_name + '.meta.zip',
'md5': '76e3d7ed5291b118372e06379cb2b490',
},
{
'url': source_url + base_name + '.audio.1.zip',
'md5': '186f6273f8f69ed9dbdc18ad65ac234f',
},
{
'url': source_url + base_name + '.audio.2.zip',
'md5': '7fd6bb63127f5785874a55aba4e77aa5',
},
{
'url': source_url + base_name + '.audio.3.zip',
'md5': '61396bede29d7c8c89729a01a6f6b2e2',
},
{
'url': source_url + base_name + '.audio.4.zip',
'md5': '6ddac89717fcf9c92c451868eed77fe1',
},
{
'url': source_url + base_name + '.audio.5.zip',
'md5': 'af4820756cdf1a7d4bd6037dc034d384',
},
{
'url': source_url + base_name + '.audio.6.zip',
'md5': 'ebd11ec24411f2a17a64723bd4aa7fff',
},
{
'url': source_url + base_name + '.audio.7.zip',
'md5': '2be39a76aeed704d5929d020a2909efd',
},
{
'url': source_url + base_name + '.audio.8.zip',
'md5': '972d8afe0874720fc2f28086e7cb22a9',
},
]
label_list = [
'airport', 'shopping_mall', 'metro_station', 'street_pedestrian',
'public_square', 'street_traffic', 'tram', 'bus', 'metro', 'park'
]
meta_base_path = os.path.join(base_name, base_name + '.meta')
meta = os.path.join(meta_base_path, 'meta.csv')
meta_info = collections.namedtuple('META_INFO', (
'filename_audio', 'filename_video', 'scene_label', 'identifier'))
subset_meta = {
'train':
os.path.join(meta_base_path, 'evaluation_setup', 'fold1_train.csv'),
'dev':
os.path.join(meta_base_path, 'evaluation_setup', 'fold1_evaluate.csv'),
'test':
os.path.join(meta_base_path, 'evaluation_setup', 'fold1_test.csv'),
}
subset_meta_info = collections.namedtuple('SUBSET_META_INFO', (
'filename_audio', 'filename_video', 'scene_label'))
audio_path = os.path.join(base_name, 'audio')
def __init__(self, mode: str='train', feat_type: str='raw', **kwargs):
"""
Ags:
mode (:obj:`str`, `optional`, defaults to `train`):
It identifies the dataset mode (train or dev).
feat_type (:obj:`str`, `optional`, defaults to `raw`):
It identifies the feature type that user wants to extrace of an audio file.
"""
files, labels = self._get_data(mode)
super(UrbanAudioVisualScenes, self).__init__(
files=files, labels=labels, feat_type=feat_type, **kwargs)
def _get_meta_info(self, subset: str=None,
skip_header: bool=True) -> List[collections.namedtuple]:
if subset is None:
meta_file = self.meta
meta_info = self.meta_info
else:
assert subset in self.subset_meta, f'Subset must be one in {list(self.subset_meta.keys())}, but got {subset}.'
meta_file = self.subset_meta[subset]
meta_info = self.subset_meta_info
ret = []
with open(os.path.join(DATA_HOME, meta_file), 'r') as rf:
lines = rf.readlines()[1:] if skip_header else rf.readlines()
for line in lines:
ret.append(meta_info(*line.strip().split('\t')))
return ret
def _get_data(self, mode: str) -> Tuple[List[str], List[int]]:
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
not os.path.isfile(os.path.join(DATA_HOME, self.meta)):
download_and_decompress(self.archieves,
os.path.join(DATA_HOME, self.base_name))
meta_info = self._get_meta_info(subset=mode, skip_header=True)
files = []
labels = []
for sample in meta_info:
filename, _, label = sample[:3]
filename = os.path.basename(filename)
target = self.label_list.index(label)
files.append(os.path.join(DATA_HOME, self.audio_path, filename))
labels.append(int(target))
return files, labels

@ -0,0 +1,152 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
from typing import List
from typing import Tuple
from ..utils.download import download_and_decompress
from ..utils.env import DATA_HOME
from .dataset import AudioClassificationDataset
__all__ = ['ESC50']
class ESC50(AudioClassificationDataset):
"""
The ESC-50 dataset is a labeled collection of 2000 environmental audio recordings
suitable for benchmarking methods of environmental sound classification. The dataset
consists of 5-second-long recordings organized into 50 semantical classes (with
40 examples per class)
Reference:
ESC: Dataset for Environmental Sound Classification
http://dx.doi.org/10.1145/2733373.2806390
"""
archieves = [
{
'url':
'https://paddleaudio.bj.bcebos.com/datasets/ESC-50-master.zip',
'md5': '7771e4b9d86d0945acce719c7a59305a',
},
]
label_list = [
# Animals
'Dog',
'Rooster',
'Pig',
'Cow',
'Frog',
'Cat',
'Hen',
'Insects (flying)',
'Sheep',
'Crow',
# Natural soundscapes & water sounds
'Rain',
'Sea waves',
'Crackling fire',
'Crickets',
'Chirping birds',
'Water drops',
'Wind',
'Pouring water',
'Toilet flush',
'Thunderstorm',
# Human, non-speech sounds
'Crying baby',
'Sneezing',
'Clapping',
'Breathing',
'Coughing',
'Footsteps',
'Laughing',
'Brushing teeth',
'Snoring',
'Drinking, sipping',
# Interior/domestic sounds
'Door knock',
'Mouse click',
'Keyboard typing',
'Door, wood creaks',
'Can opening',
'Washing machine',
'Vacuum cleaner',
'Clock alarm',
'Clock tick',
'Glass breaking',
# Exterior/urban noises
'Helicopter',
'Chainsaw',
'Siren',
'Car horn',
'Engine',
'Train',
'Church bells',
'Airplane',
'Fireworks',
'Hand saw',
]
meta = os.path.join('ESC-50-master', 'meta', 'esc50.csv')
meta_info = collections.namedtuple(
'META_INFO',
('filename', 'fold', 'target', 'category', 'esc10', 'src_file', 'take'))
audio_path = os.path.join('ESC-50-master', 'audio')
def __init__(self,
mode: str='train',
split: int=1,
feat_type: str='raw',
**kwargs):
"""
Ags:
mode (:obj:`str`, `optional`, defaults to `train`):
It identifies the dataset mode (train or dev).
split (:obj:`int`, `optional`, defaults to 1):
It specify the fold of dev dataset.
feat_type (:obj:`str`, `optional`, defaults to `raw`):
It identifies the feature type that user wants to extrace of an audio file.
"""
files, labels = self._get_data(mode, split)
super(ESC50, self).__init__(
files=files, labels=labels, feat_type=feat_type, **kwargs)
def _get_meta_info(self) -> List[collections.namedtuple]:
ret = []
with open(os.path.join(DATA_HOME, self.meta), 'r') as rf:
for line in rf.readlines()[1:]:
ret.append(self.meta_info(*line.strip().split(',')))
return ret
def _get_data(self, mode: str, split: int) -> Tuple[List[str], List[int]]:
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
not os.path.isfile(os.path.join(DATA_HOME, self.meta)):
download_and_decompress(self.archieves, DATA_HOME)
meta_info = self._get_meta_info()
files = []
labels = []
for sample in meta_info:
filename, fold, target, _, _, _, _ = sample
if mode == 'train' and int(fold) != split:
files.append(os.path.join(DATA_HOME, self.audio_path, filename))
labels.append(int(target))
if mode != 'train' and int(fold) == split:
files.append(os.path.join(DATA_HOME, self.audio_path, filename))
labels.append(int(target))
return files, labels

@ -0,0 +1,115 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
import random
from typing import List
from typing import Tuple
from ..utils.download import download_and_decompress
from ..utils.env import DATA_HOME
from .dataset import AudioClassificationDataset
__all__ = ['GTZAN']
class GTZAN(AudioClassificationDataset):
"""
The GTZAN dataset consists of 1000 audio tracks each 30 seconds long. It contains 10 genres,
each represented by 100 tracks. The dataset is the most-used public dataset for evaluation
in machine listening research for music genre recognition (MGR).
Reference:
Musical genre classification of audio signals
https://ieeexplore.ieee.org/document/1021072/
"""
archieves = [
{
'url': 'http://opihi.cs.uvic.ca/sound/genres.tar.gz',
'md5': '5b3d6dddb579ab49814ab86dba69e7c7',
},
]
label_list = [
'blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal',
'pop', 'reggae', 'rock'
]
meta = os.path.join('genres', 'input.mf')
meta_info = collections.namedtuple('META_INFO', ('file_path', 'label'))
audio_path = 'genres'
def __init__(self,
mode='train',
seed=0,
n_folds=5,
split=1,
feat_type='raw',
**kwargs):
"""
Ags:
mode (:obj:`str`, `optional`, defaults to `train`):
It identifies the dataset mode (train or dev).
seed (:obj:`int`, `optional`, defaults to 0):
Set the random seed to shuffle samples.
n_folds (:obj:`int`, `optional`, defaults to 5):
Split the dataset into n folds. 1 fold for dev dataset and n-1 for train dataset.
split (:obj:`int`, `optional`, defaults to 1):
It specify the fold of dev dataset.
feat_type (:obj:`str`, `optional`, defaults to `raw`):
It identifies the feature type that user wants to extrace of an audio file.
"""
assert split <= n_folds, f'The selected split should not be larger than n_fold, but got {split} > {n_folds}'
files, labels = self._get_data(mode, seed, n_folds, split)
super(GTZAN, self).__init__(
files=files, labels=labels, feat_type=feat_type, **kwargs)
def _get_meta_info(self) -> List[collections.namedtuple]:
ret = []
with open(os.path.join(DATA_HOME, self.meta), 'r') as rf:
for line in rf.readlines():
ret.append(self.meta_info(*line.strip().split('\t')))
return ret
def _get_data(self, mode, seed, n_folds,
split) -> Tuple[List[str], List[int]]:
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
not os.path.isfile(os.path.join(DATA_HOME, self.meta)):
download_and_decompress(self.archieves, DATA_HOME)
meta_info = self._get_meta_info()
random.seed(seed) # shuffle samples to split data
random.shuffle(
meta_info
) # make sure using the same seed to create train and dev dataset
files = []
labels = []
n_samples_per_fold = len(meta_info) // n_folds
for idx, sample in enumerate(meta_info):
file_path, label = sample
filename = os.path.basename(file_path)
target = self.label_list.index(label)
fold = idx // n_samples_per_fold + 1
if mode == 'train' and int(fold) != split:
files.append(
os.path.join(DATA_HOME, self.audio_path, label, filename))
labels.append(target)
if mode != 'train' and int(fold) == split:
files.append(
os.path.join(DATA_HOME, self.audio_path, label, filename))
labels.append(target)
return files, labels

@ -0,0 +1,199 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import codecs
import collections
import json
import os
from typing import Dict
from paddle.io import Dataset
from tqdm import tqdm
from ..backends import load as load_audio
from ..utils.download import download_and_decompress
from ..utils.env import DATA_HOME
from ..utils.log import logger
from .dataset import feat_funcs
__all__ = ['LIBRISPEECH']
class LIBRISPEECH(Dataset):
"""
LibriSpeech is a corpus of approximately 1000 hours of 16kHz read English speech,
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is
derived from read audiobooks from the LibriVox project, and has been carefully
segmented and aligned.
Reference:
LIBRISPEECH: AN ASR CORPUS BASED ON PUBLIC DOMAIN AUDIO BOOKS
http://www.danielpovey.com/files/2015_icassp_librispeech.pdf
https://arxiv.org/abs/1709.05522
"""
source_url = 'http://www.openslr.org/resources/12/'
archieves = [
{
'url': source_url + 'train-clean-100.tar.gz',
'md5': '2a93770f6d5c6c964bc36631d331a522',
},
{
'url': source_url + 'train-clean-360.tar.gz',
'md5': 'c0e676e450a7ff2f54aeade5171606fa',
},
{
'url': source_url + 'train-other-500.tar.gz',
'md5': 'd1a0fd59409feb2c614ce4d30c387708',
},
{
'url': source_url + 'dev-clean.tar.gz',
'md5': '42e2234ba48799c1f50f24a7926300a1',
},
{
'url': source_url + 'dev-other.tar.gz',
'md5': 'c8d0bcc9cca99d4f8b62fcc847357931',
},
{
'url': source_url + 'test-clean.tar.gz',
'md5': '32fa31d27d2e1cad72775fee3f4849a9',
},
{
'url': source_url + 'test-other.tar.gz',
'md5': 'fb5a50374b501bb3bac4815ee91d3135',
},
]
speaker_meta = os.path.join('LibriSpeech', 'SPEAKERS.TXT')
utt_info = collections.namedtuple('META_INFO', (
'file_path', 'utt_id', 'text', 'spk_id', 'spk_gender'))
audio_path = 'LibriSpeech'
manifest_path = os.path.join('LibriSpeech', 'manifest')
subset = [
'train-clean-100', 'train-clean-360', 'train-clean-500', 'dev-clean',
'dev-other', 'test-clean', 'test-other'
]
def __init__(self,
subset: str='train-clean-100',
feat_type: str='raw',
**kwargs):
assert subset in self.subset, 'Dataset subset must be one in {}, but got {}'.format(
self.subset, subset)
self.subset = subset
self.feat_type = feat_type
self.feat_config = kwargs
self._data = self._get_data()
super(LIBRISPEECH, self).__init__()
def _get_speaker_info(self) -> Dict[str, str]:
ret = {}
with open(os.path.join(DATA_HOME, self.speaker_meta), 'r') as rf:
for line in rf.readlines():
if ';' in line: # Skip dataset abstract
continue
spk_id, gender = map(str.strip,
line.split('|')[:2]) # spk_id, gender
ret.update({spk_id: gender})
return ret
def _get_text_info(self, trans_file) -> Dict[str, str]:
ret = {}
with open(trans_file, 'r') as rf:
for line in rf.readlines():
utt_id, text = map(str.strip, line.split(' ',
1)) # utt_id, text
ret.update({utt_id: text})
return ret
def _get_data(self):
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
not os.path.isfile(os.path.join(DATA_HOME, self.speaker_meta)):
download_and_decompress(self.archieves, DATA_HOME,
len(self.archieves))
# Speaker info
speaker_info = self._get_speaker_info()
# Text info
text_info = {}
for root, _, files in os.walk(
os.path.join(DATA_HOME, self.audio_path, self.subset)):
for file in files:
if file.endswith('.trans.txt'):
text_info.update(
self._get_text_info(os.path.join(root, file)))
data = []
for root, _, files in os.walk(
os.path.join(DATA_HOME, self.audio_path, self.subset)):
for file in files:
if file.endswith('.flac'):
utt_id = os.path.splitext(file)[0]
spk_id = utt_id.split('-')[0]
if utt_id not in text_info \
or spk_id not in speaker_info : # Skip samples with incomplete data
continue
file_path = os.path.join(root, file)
text = text_info[utt_id]
spk_gender = speaker_info[spk_id]
data.append(
self.utt_info(file_path, utt_id, text, spk_id,
spk_gender))
return data
def _convert_to_record(self, idx: int):
sample = self._data[idx]
record = {}
# To show all fields in a namedtuple: `type(sample)._fields`
for field in type(sample)._fields:
record[field] = getattr(sample, field)
waveform, sr = load_audio(
sample[0]) # The first element of sample is file path
feat_func = feat_funcs[self.feat_type]
feat = feat_func(
waveform, sample_rate=sr,
**self.feat_config) if feat_func else waveform
record.update({'feat': feat, 'duration': len(waveform) / sr})
return record
def create_manifest(self, prefix='manifest'):
if not os.path.isdir(os.path.join(DATA_HOME, self.manifest_path)):
os.makedirs(os.path.join(DATA_HOME, self.manifest_path))
manifest_file = os.path.join(DATA_HOME, self.manifest_path,
f'{prefix}.{self.subset}')
with codecs.open(manifest_file, 'w', 'utf-8') as f:
for idx in tqdm(range(len(self))):
record = self._convert_to_record(idx)
record_line = json.dumps(
{
'utt': record['utt_id'],
'feat': record['file_path'],
'feat_shape': (record['duration'], ),
'text': record['text'],
'spk': record['spk_id'],
'gender': record['spk_gender'],
},
ensure_ascii=False)
f.write(record_line + '\n')
logger.info(f'Manifest file {manifest_file} created.')
def __getitem__(self, idx):
record = self._convert_to_record(idx)
return tuple(record.values())
def __len__(self):
return len(self._data)

@ -0,0 +1,136 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
import random
from typing import List
from typing import Tuple
from ..utils.download import download_and_decompress
from ..utils.env import DATA_HOME
from .dataset import AudioClassificationDataset
__all__ = ['RAVDESS']
class RAVDESS(AudioClassificationDataset):
"""
The RAVDESS contains 24 professional actors (12 female, 12 male), vocalizing two
lexically-matched statements in a neutral North American accent. Speech emotions
includes calm, happy, sad, angry, fearful, surprise, and disgust expressions.
Each expression is produced at two levels of emotional intensity (normal, strong),
with an additional neutral expression.
Reference:
The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS):
A dynamic, multimodal set of facial and vocal expressions in North American English
https://doi.org/10.1371/journal.pone.0196391
"""
archieves = [
{
'url':
'https://zenodo.org/record/1188976/files/Audio_Song_Actors_01-24.zip',
'md5':
'5411230427d67a21e18aa4d466e6d1b9',
},
{
'url':
'https://zenodo.org/record/1188976/files/Audio_Speech_Actors_01-24.zip',
'md5':
'bc696df654c87fed845eb13823edef8a',
},
]
label_list = [
'neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust',
'surprised'
]
meta_info = collections.namedtuple(
'META_INFO', ('modality', 'vocal_channel', 'emotion',
'emotion_intensity', 'statement', 'repitition', 'actor'))
speech_path = os.path.join(DATA_HOME, 'Audio_Speech_Actors_01-24')
song_path = os.path.join(DATA_HOME, 'Audio_Song_Actors_01-24')
def __init__(self,
mode='train',
seed=0,
n_folds=5,
split=1,
feat_type='raw',
**kwargs):
"""
Ags:
mode (:obj:`str`, `optional`, defaults to `train`):
It identifies the dataset mode (train or dev).
seed (:obj:`int`, `optional`, defaults to 0):
Set the random seed to shuffle samples.
n_folds (:obj:`int`, `optional`, defaults to 5):
Split the dataset into n folds. 1 fold for dev dataset and n-1 for train dataset.
split (:obj:`int`, `optional`, defaults to 1):
It specify the fold of dev dataset.
feat_type (:obj:`str`, `optional`, defaults to `raw`):
It identifies the feature type that user wants to extrace of an audio file.
"""
assert split <= n_folds, f'The selected split should not be larger than n_fold, but got {split} > {n_folds}'
files, labels = self._get_data(mode, seed, n_folds, split)
super(RAVDESS, self).__init__(
files=files, labels=labels, feat_type=feat_type, **kwargs)
def _get_meta_info(self, files) -> List[collections.namedtuple]:
ret = []
for file in files:
basename_without_extend = os.path.basename(file)[:-4]
ret.append(self.meta_info(*basename_without_extend.split('-')))
return ret
def _get_data(self, mode, seed, n_folds,
split) -> Tuple[List[str], List[int]]:
if not os.path.isdir(self.speech_path) and not os.path.isdir(
self.song_path):
download_and_decompress(self.archieves, DATA_HOME)
wav_files = []
for root, _, files in os.walk(self.speech_path):
for file in files:
if file.endswith('.wav'):
wav_files.append(os.path.join(root, file))
for root, _, files in os.walk(self.song_path):
for file in files:
if file.endswith('.wav'):
wav_files.append(os.path.join(root, file))
random.seed(seed) # shuffle samples to split data
random.shuffle(
wav_files
) # make sure using the same seed to create train and dev dataset
meta_info = self._get_meta_info(wav_files)
files = []
labels = []
n_samples_per_fold = len(meta_info) // n_folds
for idx, sample in enumerate(meta_info):
_, _, emotion, _, _, _, _ = sample
target = int(emotion) - 1
fold = idx // n_samples_per_fold + 1
if mode == 'train' and int(fold) != split:
files.append(wav_files[idx])
labels.append(target)
if mode != 'train' and int(fold) == split:
files.append(wav_files[idx])
labels.append(target)
return files, labels

@ -0,0 +1,126 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
import random
from typing import List
from typing import Tuple
from ..utils.download import download_and_decompress
from ..utils.env import DATA_HOME
from .dataset import AudioClassificationDataset
__all__ = ['TESS']
class TESS(AudioClassificationDataset):
"""
TESS is a set of 200 target words were spoken in the carrier phrase
"Say the word _____' by two actresses (aged 26 and 64 years) and
recordings were made of the set portraying each of seven emotions(anger,
disgust, fear, happiness, pleasant surprise, sadness, and neutral).
There are 2800 stimuli in total.
Reference:
Toronto emotional speech set (TESS)
https://doi.org/10.5683/SP2/E8H2MF
"""
archieves = [
{
'url':
'https://bj.bcebos.com/paddleaudio/datasets/TESS_Toronto_emotional_speech_set.zip',
'md5':
'1465311b24d1de704c4c63e4ccc470c7',
},
]
label_list = [
'angry',
'disgust',
'fear',
'happy',
'neutral',
'ps', # pleasant surprise
'sad',
]
meta_info = collections.namedtuple('META_INFO',
('speaker', 'word', 'emotion'))
audio_path = 'TESS_Toronto_emotional_speech_set'
def __init__(self,
mode='train',
seed=0,
n_folds=5,
split=1,
feat_type='raw',
**kwargs):
"""
Ags:
mode (:obj:`str`, `optional`, defaults to `train`):
It identifies the dataset mode (train or dev).
seed (:obj:`int`, `optional`, defaults to 0):
Set the random seed to shuffle samples.
n_folds (:obj:`int`, `optional`, defaults to 5):
Split the dataset into n folds. 1 fold for dev dataset and n-1 for train dataset.
split (:obj:`int`, `optional`, defaults to 1):
It specify the fold of dev dataset.
feat_type (:obj:`str`, `optional`, defaults to `raw`):
It identifies the feature type that user wants to extrace of an audio file.
"""
assert split <= n_folds, f'The selected split should not be larger than n_fold, but got {split} > {n_folds}'
files, labels = self._get_data(mode, seed, n_folds, split)
super(TESS, self).__init__(
files=files, labels=labels, feat_type=feat_type, **kwargs)
def _get_meta_info(self, files) -> List[collections.namedtuple]:
ret = []
for file in files:
basename_without_extend = os.path.basename(file)[:-4]
ret.append(self.meta_info(*basename_without_extend.split('_')))
return ret
def _get_data(self, mode, seed, n_folds,
split) -> Tuple[List[str], List[int]]:
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)):
download_and_decompress(self.archieves, DATA_HOME)
wav_files = []
for root, _, files in os.walk(os.path.join(DATA_HOME, self.audio_path)):
for file in files:
if file.endswith('.wav'):
wav_files.append(os.path.join(root, file))
random.seed(seed) # shuffle samples to split data
random.shuffle(
wav_files
) # make sure using the same seed to create train and dev dataset
meta_info = self._get_meta_info(wav_files)
files = []
labels = []
n_samples_per_fold = len(meta_info) // n_folds
for idx, sample in enumerate(meta_info):
_, _, emotion = sample
target = self.label_list.index(emotion)
fold = idx // n_samples_per_fold + 1
if mode == 'train' and int(fold) != split:
files.append(wav_files[idx])
labels.append(target)
if mode != 'train' and int(fold) == split:
files.append(wav_files[idx])
labels.append(target)
return files, labels

@ -0,0 +1,104 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
from typing import List
from typing import Tuple
from ..utils.download import download_and_decompress
from ..utils.env import DATA_HOME
from .dataset import AudioClassificationDataset
__all__ = ['UrbanSound8K']
class UrbanSound8K(AudioClassificationDataset):
"""
UrbanSound8K dataset contains 8732 labeled sound excerpts (<=4s) of urban
sounds from 10 classes: air_conditioner, car_horn, children_playing, dog_bark,
drilling, enginge_idling, gun_shot, jackhammer, siren, and street_music. The
classes are drawn from the urban sound taxonomy.
Reference:
A Dataset and Taxonomy for Urban Sound Research
https://dl.acm.org/doi/10.1145/2647868.2655045
"""
archieves = [
{
'url':
'https://zenodo.org/record/1203745/files/UrbanSound8K.tar.gz',
'md5': '9aa69802bbf37fb986f71ec1483a196e',
},
]
label_list = [
"air_conditioner", "car_horn", "children_playing", "dog_bark",
"drilling", "engine_idling", "gun_shot", "jackhammer", "siren",
"street_music"
]
meta = os.path.join('UrbanSound8K', 'metadata', 'UrbanSound8K.csv')
meta_info = collections.namedtuple(
'META_INFO', ('filename', 'fsid', 'start', 'end', 'salience', 'fold',
'class_id', 'label'))
audio_path = os.path.join('UrbanSound8K', 'audio')
def __init__(self,
mode: str='train',
split: int=1,
feat_type: str='raw',
**kwargs):
files, labels = self._get_data(mode, split)
super(UrbanSound8K, self).__init__(
files=files, labels=labels, feat_type=feat_type, **kwargs)
"""
Ags:
mode (:obj:`str`, `optional`, defaults to `train`):
It identifies the dataset mode (train or dev).
split (:obj:`int`, `optional`, defaults to 1):
It specify the fold of dev dataset.
feat_type (:obj:`str`, `optional`, defaults to `raw`):
It identifies the feature type that user wants to extrace of an audio file.
"""
def _get_meta_info(self):
ret = []
with open(os.path.join(DATA_HOME, self.meta), 'r') as rf:
for line in rf.readlines()[1:]:
ret.append(self.meta_info(*line.strip().split(',')))
return ret
def _get_data(self, mode: str, split: int) -> Tuple[List[str], List[int]]:
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
not os.path.isfile(os.path.join(DATA_HOME, self.meta)):
download_and_decompress(self.archieves, DATA_HOME)
meta_info = self._get_meta_info()
files = []
labels = []
for sample in meta_info:
filename, _, _, _, _, fold, target, _ = sample
if mode == 'train' and int(fold) != split:
files.append(
os.path.join(DATA_HOME, self.audio_path, f'fold{fold}',
filename))
labels.append(int(target))
if mode != 'train' and int(fold) == split:
files.append(
os.path.join(DATA_HOME, self.audio_path, f'fold{fold}',
filename))
labels.append(int(target))
return files, labels

@ -0,0 +1,15 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .augment import *
from .core import *

@ -0,0 +1,170 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import numpy as np
from numpy import ndarray as array
from paddleaudio.backends import depth_convert
from paddleaudio.utils import ParameterError
__all__ = [
'depth_augment',
'spect_augment',
'random_crop1d',
'random_crop2d',
'adaptive_spect_augment',
]
def randint(high: int) -> int:
"""Generate one random integer in range [0 high)
This is a helper function for random data augmentaiton
"""
return int(np.random.randint(0, high=high))
def rand() -> float:
"""Generate one floating-point number in range [0 1)
This is a helper function for random data augmentaiton
"""
return float(np.random.rand(1))
def depth_augment(y: array,
choices: List=['int8', 'int16'],
probs: List[float]=[0.5, 0.5]) -> array:
""" Audio depth augmentation
Do audio depth augmentation to simulate the distortion brought by quantization.
"""
assert len(probs) == len(
choices
), 'number of choices {} must be equal to size of probs {}'.format(
len(choices), len(probs))
depth = np.random.choice(choices, p=probs)
src_depth = y.dtype
y1 = depth_convert(y, depth)
y2 = depth_convert(y1, src_depth)
return y2
def adaptive_spect_augment(spect: array, tempo_axis: int=0,
level: float=0.1) -> array:
"""Do adpative spectrogram augmentation
The level of the augmentation is gowern by the paramter level,
ranging from 0 to 1, with 0 represents no augmentation
"""
assert spect.ndim == 2., 'only supports 2d tensor or numpy array'
if tempo_axis == 0:
nt, nf = spect.shape
else:
nf, nt = spect.shape
time_mask_width = int(nt * level * 0.5)
freq_mask_width = int(nf * level * 0.5)
num_time_mask = int(10 * level)
num_freq_mask = int(10 * level)
if tempo_axis == 0:
for _ in range(num_time_mask):
start = randint(nt - time_mask_width)
spect[start:start + time_mask_width, :] = 0
for _ in range(num_freq_mask):
start = randint(nf - freq_mask_width)
spect[:, start:start + freq_mask_width] = 0
else:
for _ in range(num_time_mask):
start = randint(nt - time_mask_width)
spect[:, start:start + time_mask_width] = 0
for _ in range(num_freq_mask):
start = randint(nf - freq_mask_width)
spect[start:start + freq_mask_width, :] = 0
return spect
def spect_augment(spect: array,
tempo_axis: int=0,
max_time_mask: int=3,
max_freq_mask: int=3,
max_time_mask_width: int=30,
max_freq_mask_width: int=20) -> array:
"""Do spectrogram augmentation in both time and freq axis
Reference:
"""
assert spect.ndim == 2., 'only supports 2d tensor or numpy array'
if tempo_axis == 0:
nt, nf = spect.shape
else:
nf, nt = spect.shape
num_time_mask = randint(max_time_mask)
num_freq_mask = randint(max_freq_mask)
time_mask_width = randint(max_time_mask_width)
freq_mask_width = randint(max_freq_mask_width)
if tempo_axis == 0:
for _ in range(num_time_mask):
start = randint(nt - time_mask_width)
spect[start:start + time_mask_width, :] = 0
for _ in range(num_freq_mask):
start = randint(nf - freq_mask_width)
spect[:, start:start + freq_mask_width] = 0
else:
for _ in range(num_time_mask):
start = randint(nt - time_mask_width)
spect[:, start:start + time_mask_width] = 0
for _ in range(num_freq_mask):
start = randint(nf - freq_mask_width)
spect[start:start + freq_mask_width, :] = 0
return spect
def random_crop1d(y: array, crop_len: int) -> array:
""" Do random cropping on 1d input signal
The input is a 1d signal, typically a sound waveform
"""
if y.ndim != 1:
'only accept 1d tensor or numpy array'
n = len(y)
idx = randint(n - crop_len)
return y[idx:idx + crop_len]
def random_crop2d(s: array, crop_len: int, tempo_axis: int=0) -> array:
""" Do random cropping for 2D array, typically a spectrogram.
The cropping is done in temporal direction on the time-freq input signal.
"""
if tempo_axis >= s.ndim:
raise ParameterError('axis out of range')
n = s.shape[tempo_axis]
idx = randint(high=n - crop_len)
sli = [slice(None) for i in range(s.ndim)]
sli[tempo_axis] = slice(idx, idx + crop_len)
out = s[tuple(sli)]
return out

@ -0,0 +1,576 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List
from typing import Optional
from typing import Union
import numpy as np
import scipy
from numpy import ndarray as array
from numpy.lib.stride_tricks import as_strided
from scipy.signal import get_window
from paddleaudio.utils import ParameterError
__all__ = [
'stft',
'mfcc',
'hz_to_mel',
'mel_to_hz',
'split_frames',
'mel_frequencies',
'power_to_db',
'compute_fbank_matrix',
'melspectrogram',
'spectrogram',
'mu_encode',
'mu_decode',
]
def pad_center(data: array, size: int, axis: int=-1, **kwargs) -> array:
"""Pad an array to a target length along a target axis.
This differs from `np.pad` by centering the data prior to padding,
analogous to `str.center`
"""
kwargs.setdefault("mode", "constant")
n = data.shape[axis]
lpad = int((size - n) // 2)
lengths = [(0, 0)] * data.ndim
lengths[axis] = (lpad, int(size - n - lpad))
if lpad < 0:
raise ParameterError(("Target size ({size:d}) must be "
"at least input size ({n:d})"))
return np.pad(data, lengths, **kwargs)
def split_frames(x: array, frame_length: int, hop_length: int,
axis: int=-1) -> array:
"""Slice a data array into (overlapping) frames.
This function is aligned with librosa.frame
"""
if not isinstance(x, np.ndarray):
raise ParameterError(
f"Input must be of type numpy.ndarray, given type(x)={type(x)}")
if x.shape[axis] < frame_length:
raise ParameterError(f"Input is too short (n={x.shape[axis]:d})"
f" for frame_length={frame_length:d}")
if hop_length < 1:
raise ParameterError(f"Invalid hop_length: {hop_length:d}")
if axis == -1 and not x.flags["F_CONTIGUOUS"]:
warnings.warn(f"librosa.util.frame called with axis={axis} "
"on a non-contiguous input. This will result in a copy.")
x = np.asfortranarray(x)
elif axis == 0 and not x.flags["C_CONTIGUOUS"]:
warnings.warn(f"librosa.util.frame called with axis={axis} "
"on a non-contiguous input. This will result in a copy.")
x = np.ascontiguousarray(x)
n_frames = 1 + (x.shape[axis] - frame_length) // hop_length
strides = np.asarray(x.strides)
new_stride = np.prod(strides[strides > 0] // x.itemsize) * x.itemsize
if axis == -1:
shape = list(x.shape)[:-1] + [frame_length, n_frames]
strides = list(strides) + [hop_length * new_stride]
elif axis == 0:
shape = [n_frames, frame_length] + list(x.shape)[1:]
strides = [hop_length * new_stride] + list(strides)
else:
raise ParameterError(f"Frame axis={axis} must be either 0 or -1")
return as_strided(x, shape=shape, strides=strides)
def _check_audio(y, mono=True) -> bool:
"""Determine whether a variable contains valid audio data.
The audio y must be a np.ndarray, ether 1-channel or two channel
"""
if not isinstance(y, np.ndarray):
raise ParameterError("Audio data must be of type numpy.ndarray")
if y.ndim > 2:
raise ParameterError(
f"Invalid shape for audio ndim={y.ndim:d}, shape={y.shape}")
if mono and y.ndim == 2:
raise ParameterError(
f"Invalid shape for mono audio ndim={y.ndim:d}, shape={y.shape}")
if (mono and len(y) == 0) or (not mono and y.shape[1] < 0):
raise ParameterError(f"Audio is empty ndim={y.ndim:d}, shape={y.shape}")
if not np.issubdtype(y.dtype, np.floating):
raise ParameterError("Audio data must be floating-point")
if not np.isfinite(y).all():
raise ParameterError("Audio buffer is not finite everywhere")
return True
def hz_to_mel(frequencies: Union[float, List[float], array],
htk: bool=False) -> array:
"""Convert Hz to Mels
This function is aligned with librosa.
"""
freq = np.asanyarray(frequencies)
if htk:
return 2595.0 * np.log10(1.0 + freq / 700.0)
# Fill in the linear part
f_min = 0.0
f_sp = 200.0 / 3
mels = (freq - f_min) / f_sp
# Fill in the log-scale part
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = np.log(6.4) / 27.0 # step size for log region
if freq.ndim:
# If we have array data, vectorize
log_t = freq >= min_log_hz
mels[log_t] = min_log_mel + \
np.log(freq[log_t] / min_log_hz) / logstep
elif freq >= min_log_hz:
# If we have scalar data, heck directly
mels = min_log_mel + np.log(freq / min_log_hz) / logstep
return mels
def mel_to_hz(mels: Union[float, List[float], array], htk: int=False) -> array:
"""Convert mel bin numbers to frequencies.
This function is aligned with librosa.
"""
mel_array = np.asanyarray(mels)
if htk:
return 700.0 * (10.0**(mel_array / 2595.0) - 1.0)
# Fill in the linear scale
f_min = 0.0
f_sp = 200.0 / 3
freqs = f_min + f_sp * mel_array
# And now the nonlinear scale
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = np.log(6.4) / 27.0 # step size for log region
if mel_array.ndim:
# If we have vector data, vectorize
log_t = mel_array >= min_log_mel
freqs[log_t] = min_log_hz * \
np.exp(logstep * (mel_array[log_t] - min_log_mel))
elif mel_array >= min_log_mel:
# If we have scalar data, check directly
freqs = min_log_hz * np.exp(logstep * (mel_array - min_log_mel))
return freqs
def mel_frequencies(n_mels: int=128,
fmin: float=0.0,
fmax: float=11025.0,
htk: bool=False) -> array:
"""Compute mel frequencies
This function is aligned with librosa.
"""
# 'Center freqs' of mel bands - uniformly spaced between limits
min_mel = hz_to_mel(fmin, htk=htk)
max_mel = hz_to_mel(fmax, htk=htk)
mels = np.linspace(min_mel, max_mel, n_mels)
return mel_to_hz(mels, htk=htk)
def fft_frequencies(sr: int, n_fft: int) -> array:
"""Compute fourier frequencies.
This function is aligned with librosa.
"""
return np.linspace(0, float(sr) / 2, int(1 + n_fft // 2), endpoint=True)
def compute_fbank_matrix(sr: int,
n_fft: int,
n_mels: int=128,
fmin: float=0.0,
fmax: Optional[float]=None,
htk: bool=False,
norm: str="slaney",
dtype: type=np.float32):
"""Compute fbank matrix.
This funciton is aligned with librosa.
"""
if norm != "slaney":
raise ParameterError('norm must set to slaney')
if fmax is None:
fmax = float(sr) / 2
# Initialize the weights
n_mels = int(n_mels)
weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)
# Center freqs of each FFT bin
fftfreqs = fft_frequencies(sr=sr, n_fft=n_fft)
# 'Center freqs' of mel bands - uniformly spaced between limits
mel_f = mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax, htk=htk)
fdiff = np.diff(mel_f)
ramps = np.subtract.outer(mel_f, fftfreqs)
for i in range(n_mels):
# lower and upper slopes for all bins
lower = -ramps[i] / fdiff[i]
upper = ramps[i + 2] / fdiff[i + 1]
# .. then intersect them with each other and zero
weights[i] = np.maximum(0, np.minimum(lower, upper))
if norm == "slaney":
# Slaney-style mel is scaled to be approx constant energy per channel
enorm = 2.0 / (mel_f[2:n_mels + 2] - mel_f[:n_mels])
weights *= enorm[:, np.newaxis]
# Only check weights if f_mel[0] is positive
if not np.all((mel_f[:-2] == 0) | (weights.max(axis=1) > 0)):
# This means we have an empty channel somewhere
warnings.warn("Empty filters detected in mel frequency basis. "
"Some channels will produce empty responses. "
"Try increasing your sampling rate (and fmax) or "
"reducing n_mels.")
return weights
def stft(x: array,
n_fft: int=2048,
hop_length: Optional[int]=None,
win_length: Optional[int]=None,
window: str="hann",
center: bool=True,
dtype: type=np.complex64,
pad_mode: str="reflect") -> array:
"""Short-time Fourier transform (STFT).
This function is aligned with librosa.
"""
_check_audio(x)
# By default, use the entire frame
if win_length is None:
win_length = n_fft
# Set the default hop, if it's not already specified
if hop_length is None:
hop_length = int(win_length // 4)
fft_window = get_window(window, win_length, fftbins=True)
# Pad the window out to n_fft size
fft_window = pad_center(fft_window, n_fft)
# Reshape so that the window can be broadcast
fft_window = fft_window.reshape((-1, 1))
# Pad the time series so that frames are centered
if center:
if n_fft > x.shape[-1]:
warnings.warn(
f"n_fft={n_fft} is too small for input signal of length={x.shape[-1]}"
)
x = np.pad(x, int(n_fft // 2), mode=pad_mode)
elif n_fft > x.shape[-1]:
raise ParameterError(
f"n_fft={n_fft} is too small for input signal of length={x.shape[-1]}"
)
# Window the time series.
x_frames = split_frames(x, frame_length=n_fft, hop_length=hop_length)
# Pre-allocate the STFT matrix
stft_matrix = np.empty(
(int(1 + n_fft // 2), x_frames.shape[1]), dtype=dtype, order="F")
fft = np.fft # use numpy fft as default
# Constrain STFT block sizes to 256 KB
MAX_MEM_BLOCK = 2**8 * 2**10
# how many columns can we fit within MAX_MEM_BLOCK?
n_columns = MAX_MEM_BLOCK // (stft_matrix.shape[0] * stft_matrix.itemsize)
n_columns = max(n_columns, 1)
for bl_s in range(0, stft_matrix.shape[1], n_columns):
bl_t = min(bl_s + n_columns, stft_matrix.shape[1])
stft_matrix[:, bl_s:bl_t] = fft.rfft(
fft_window * x_frames[:, bl_s:bl_t], axis=0)
return stft_matrix
def power_to_db(spect: array,
ref: float=1.0,
amin: float=1e-10,
top_db: Optional[float]=80.0) -> array:
"""Convert a power spectrogram (amplitude squared) to decibel (dB) units
This computes the scaling ``10 * log10(spect / ref)`` in a numerically
stable way.
This function is aligned with librosa.
"""
spect = np.asarray(spect)
if amin <= 0:
raise ParameterError("amin must be strictly positive")
if np.issubdtype(spect.dtype, np.complexfloating):
warnings.warn(
"power_to_db was called on complex input so phase "
"information will be discarded. To suppress this warning, "
"call power_to_db(np.abs(D)**2) instead.")
magnitude = np.abs(spect)
else:
magnitude = spect
if callable(ref):
# User supplied a function to calculate reference power
ref_value = ref(magnitude)
else:
ref_value = np.abs(ref)
log_spec = 10.0 * np.log10(np.maximum(amin, magnitude))
log_spec -= 10.0 * np.log10(np.maximum(amin, ref_value))
if top_db is not None:
if top_db < 0:
raise ParameterError("top_db must be non-negative")
log_spec = np.maximum(log_spec, log_spec.max() - top_db)
return log_spec
def mfcc(x,
sr: int=16000,
spect: Optional[array]=None,
n_mfcc: int=20,
dct_type: int=2,
norm: str="ortho",
lifter: int=0,
**kwargs) -> array:
"""Mel-frequency cepstral coefficients (MFCCs)
This function is NOT strictly aligned with librosa. The following example shows how to get the
same result with librosa:
# paddleaudioe mfcc:
kwargs = {
'window_size':512,
'hop_length':320,
'mel_bins':64,
'fmin':50,
'to_db':False}
a = mfcc(x,
spect=None,
n_mfcc=20,
dct_type=2,
norm='ortho',
lifter=0,
**kwargs)
# librosa mfcc:
spect = librosa.feature.melspectrogram(x,sr=16000,n_fft=512,
win_length=512,
hop_length=320,
n_mels=64, fmin=50)
b = librosa.feature.mfcc(x,
sr=16000,
S=spect,
n_mfcc=20,
dct_type=2,
norm='ortho',
lifter=0)
assert np.mean( (a-b)**2) < 1e-8
"""
if spect is None:
spect = melspectrogram(x, sr=sr, **kwargs)
M = scipy.fftpack.dct(spect, axis=0, type=dct_type, norm=norm)[:n_mfcc]
if lifter > 0:
factor = np.sin(np.pi * np.arange(1, 1 + n_mfcc, dtype=M.dtype) /
lifter)
return M * factor[:, np.newaxis]
elif lifter == 0:
return M
else:
raise ParameterError(
f"MFCC lifter={lifter} must be a non-negative number")
def melspectrogram(x: array,
sr: int=16000,
window_size: int=512,
hop_length: int=320,
n_mels: int=64,
fmin: int=50,
fmax: Optional[float]=None,
window: str='hann',
center: bool=True,
pad_mode: str='reflect',
power: float=2.0,
to_db: bool=True,
ref: float=1.0,
amin: float=1e-10,
top_db: Optional[float]=None) -> array:
"""Compute mel-spectrogram.
Parameters:
x: numpy.ndarray
The input wavform is a numpy array [shape=(n,)]
window_size: int, typically 512, 1024, 2048, etc.
The window size for framing, also used as n_fft for stft
Returns:
The mel-spectrogram in power scale or db scale(default)
Notes:
1. sr is default to 16000, which is commonly used in speech/speaker processing.
2. when fmax is None, it is set to sr//2.
3. this function will convert mel spectgrum to db scale by default. This is different
that of librosa.
"""
_check_audio(x, mono=True)
if len(x) <= 0:
raise ParameterError('The input waveform is empty')
if fmax is None:
fmax = sr // 2
if fmin < 0 or fmin >= fmax:
raise ParameterError('fmin and fmax must statisfy 0<fmin<fmax')
s = stft(
x,
n_fft=window_size,
hop_length=hop_length,
win_length=window_size,
window=window,
center=center,
pad_mode=pad_mode)
spect_power = np.abs(s)**power
fb_matrix = compute_fbank_matrix(
sr=sr, n_fft=window_size, n_mels=n_mels, fmin=fmin, fmax=fmax)
mel_spect = np.matmul(fb_matrix, spect_power)
if to_db:
return power_to_db(mel_spect, ref=ref, amin=amin, top_db=top_db)
else:
return mel_spect
def spectrogram(x: array,
sr: int=16000,
window_size: int=512,
hop_length: int=320,
window: str='hann',
center: bool=True,
pad_mode: str='reflect',
power: float=2.0) -> array:
"""Compute spectrogram from an input waveform.
This function is a wrapper for librosa.feature.stft, with addition step to
compute the magnitude of the complex spectrogram.
"""
s = stft(
x,
n_fft=window_size,
hop_length=hop_length,
win_length=window_size,
window=window,
center=center,
pad_mode=pad_mode)
return np.abs(s)**power
def mu_encode(x: array, mu: int=255, quantized: bool=True) -> array:
"""Mu-law encoding.
Compute the mu-law decoding given an input code.
When quantized is True, the result will be converted to
integer in range [0,mu-1]. Otherwise, the resulting signal
is in range [-1,1]
Reference:
https://en.wikipedia.org/wiki/%CE%9C-law_algorithm
"""
mu = 255
y = np.sign(x) * np.log1p(mu * np.abs(x)) / np.log1p(mu)
if quantized:
y = np.floor((y + 1) / 2 * mu + 0.5) # convert to [0 , mu-1]
return y
def mu_decode(y: array, mu: int=255, quantized: bool=True) -> array:
"""Mu-law decoding.
Compute the mu-law decoding given an input code.
it assumes that the input y is in
range [0,mu-1] when quantize is True and [-1,1] otherwise
Reference:
https://en.wikipedia.org/wiki/%CE%9C-law_algorithm
"""
if mu < 1:
raise ParameterError('mu is typically set as 2**k-1, k=1, 2, 3,...')
mu = mu - 1
if quantized: # undo the quantization
y = y * 2 / mu - 1
x = np.sign(y) / mu * ((1 + mu)**np.abs(y) - 1)
return x

@ -0,0 +1,13 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -0,0 +1,309 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle.nn as nn
import paddle.nn.functional as F
from ..utils.download import load_state_dict_from_url
from ..utils.env import MODEL_HOME
__all__ = ['CNN14', 'CNN10', 'CNN6', 'cnn14', 'cnn10', 'cnn6']
pretrained_model_urls = {
'cnn14': 'https://bj.bcebos.com/paddleaudio/models/panns_cnn14.pdparams',
'cnn10': 'https://bj.bcebos.com/paddleaudio/models/panns_cnn10.pdparams',
'cnn6': 'https://bj.bcebos.com/paddleaudio/models/panns_cnn6.pdparams',
}
class ConvBlock(nn.Layer):
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv1 = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias_attr=False)
self.conv2 = nn.Conv2D(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias_attr=False)
self.bn1 = nn.BatchNorm2D(out_channels)
self.bn2 = nn.BatchNorm2D(out_channels)
def forward(self, x, pool_size=(2, 2), pool_type='avg'):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = F.relu(x)
if pool_type == 'max':
x = F.max_pool2d(x, kernel_size=pool_size)
elif pool_type == 'avg':
x = F.avg_pool2d(x, kernel_size=pool_size)
elif pool_type == 'avg+max':
x = F.avg_pool2d(
x, kernel_size=pool_size) + F.max_pool2d(
x, kernel_size=pool_size)
else:
raise Exception(
f'Pooling type of {pool_type} is not supported. It must be one of "max", "avg" and "avg+max".'
)
return x
class ConvBlock5x5(nn.Layer):
def __init__(self, in_channels, out_channels):
super(ConvBlock5x5, self).__init__()
self.conv1 = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(5, 5),
stride=(1, 1),
padding=(2, 2),
bias_attr=False)
self.bn1 = nn.BatchNorm2D(out_channels)
def forward(self, x, pool_size=(2, 2), pool_type='avg'):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
if pool_type == 'max':
x = F.max_pool2d(x, kernel_size=pool_size)
elif pool_type == 'avg':
x = F.avg_pool2d(x, kernel_size=pool_size)
elif pool_type == 'avg+max':
x = F.avg_pool2d(
x, kernel_size=pool_size) + F.max_pool2d(
x, kernel_size=pool_size)
else:
raise Exception(
f'Pooling type of {pool_type} is not supported. It must be one of "max", "avg" and "avg+max".'
)
return x
class CNN14(nn.Layer):
"""
The CNN14(14-layer CNNs) mainly consist of 6 convolutional blocks while each convolutional
block consists of 2 convolutional layers with a kernel size of 3 × 3.
Reference:
PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
https://arxiv.org/pdf/1912.10211.pdf
"""
emb_size = 2048
def __init__(self, extract_embedding: bool=True):
super(CNN14, self).__init__()
self.bn0 = nn.BatchNorm2D(64)
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)
self.fc1 = nn.Linear(2048, self.emb_size)
self.fc_audioset = nn.Linear(self.emb_size, 527)
self.extract_embedding = extract_embedding
def forward(self, x):
x.stop_gradient = False
x = x.transpose([0, 3, 2, 1])
x = self.bn0(x)
x = x.transpose([0, 3, 2, 1])
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block5(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block6(x, pool_size=(1, 1), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = x.mean(axis=3)
x = x.max(axis=2) + x.mean(axis=2)
x = F.dropout(x, p=0.5, training=self.training)
x = F.relu(self.fc1(x))
if self.extract_embedding:
output = F.dropout(x, p=0.5, training=self.training)
else:
output = F.sigmoid(self.fc_audioset(x))
return output
class CNN10(nn.Layer):
"""
The CNN10(14-layer CNNs) mainly consist of 4 convolutional blocks while each convolutional
block consists of 2 convolutional layers with a kernel size of 3 × 3.
Reference:
PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
https://arxiv.org/pdf/1912.10211.pdf
"""
emb_size = 512
def __init__(self, extract_embedding: bool=True):
super(CNN10, self).__init__()
self.bn0 = nn.BatchNorm2D(64)
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
self.fc1 = nn.Linear(512, self.emb_size)
self.fc_audioset = nn.Linear(self.emb_size, 527)
self.extract_embedding = extract_embedding
def forward(self, x):
x.stop_gradient = False
x = x.transpose([0, 3, 2, 1])
x = self.bn0(x)
x = x.transpose([0, 3, 2, 1])
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = x.mean(axis=3)
x = x.max(axis=2) + x.mean(axis=2)
x = F.dropout(x, p=0.5, training=self.training)
x = F.relu(self.fc1(x))
if self.extract_embedding:
output = F.dropout(x, p=0.5, training=self.training)
else:
output = F.sigmoid(self.fc_audioset(x))
return output
class CNN6(nn.Layer):
"""
The CNN14(14-layer CNNs) mainly consist of 4 convolutional blocks while each convolutional
block consists of 1 convolutional layers with a kernel size of 5 × 5.
Reference:
PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
https://arxiv.org/pdf/1912.10211.pdf
"""
emb_size = 512
def __init__(self, extract_embedding: bool=True):
super(CNN6, self).__init__()
self.bn0 = nn.BatchNorm2D(64)
self.conv_block1 = ConvBlock5x5(in_channels=1, out_channels=64)
self.conv_block2 = ConvBlock5x5(in_channels=64, out_channels=128)
self.conv_block3 = ConvBlock5x5(in_channels=128, out_channels=256)
self.conv_block4 = ConvBlock5x5(in_channels=256, out_channels=512)
self.fc1 = nn.Linear(512, self.emb_size)
self.fc_audioset = nn.Linear(self.emb_size, 527)
self.extract_embedding = extract_embedding
def forward(self, x):
x.stop_gradient = False
x = x.transpose([0, 3, 2, 1])
x = self.bn0(x)
x = x.transpose([0, 3, 2, 1])
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = x.mean(axis=3)
x = x.max(axis=2) + x.mean(axis=2)
x = F.dropout(x, p=0.5, training=self.training)
x = F.relu(self.fc1(x))
if self.extract_embedding:
output = F.dropout(x, p=0.5, training=self.training)
else:
output = F.sigmoid(self.fc_audioset(x))
return output
def cnn14(pretrained: bool=False, extract_embedding: bool=True) -> CNN14:
model = CNN14(extract_embedding=extract_embedding)
if pretrained:
state_dict = load_state_dict_from_url(
url=pretrained_model_urls['cnn14'],
path=os.path.join(MODEL_HOME, 'panns'))
model.set_state_dict(state_dict)
return model
def cnn10(pretrained: bool=False, extract_embedding: bool=True) -> CNN10:
model = CNN10(extract_embedding=extract_embedding)
if pretrained:
state_dict = load_state_dict_from_url(
url=pretrained_model_urls['cnn10'],
path=os.path.join(MODEL_HOME, 'panns'))
model.set_state_dict(state_dict)
return model
def cnn6(pretrained: bool=False, extract_embedding: bool=True) -> CNN6:
model = CNN6(extract_embedding=extract_embedding)
if pretrained:
state_dict = load_state_dict_from_url(
url=pretrained_model_urls['cnn6'],
path=os.path.join(MODEL_HOME, 'panns'))
model.set_state_dict(state_dict)
return model

@ -0,0 +1,18 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .download import *
from .env import *
from .error import *
from .log import *
from .time import *

@ -0,0 +1,66 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Dict
from typing import List
from paddle.framework import load as load_state_dict
from paddle.utils import download
from pathos.multiprocessing import ProcessPool
from .log import logger
download.logger = logger
def decompress(file: str):
"""
Extracts all files from a compressed file.
"""
assert os.path.isfile(file), "File: {} not exists.".format(file)
download._decompress(file)
def download_and_decompress(archives: List[Dict[str, str]],
path: str,
n_workers: int=0):
"""
Download archieves and decompress to specific path.
"""
if not os.path.isdir(path):
os.makedirs(path)
if n_workers <= 0:
for archive in archives:
assert 'url' in archive and 'md5' in archive, \
'Dictionary keys of "url" and "md5" are required in the archive, but got: {list(archieve.keys())}'
download.get_path_from_url(archive['url'], path, archive['md5'])
else:
pool = ProcessPool(nodes=n_workers)
pool.imap(download.get_path_from_url, [_['url'] for _ in archives],
[path] * len(archives), [_['md5'] for _ in archives])
pool.close()
pool.join()
def load_state_dict_from_url(url: str, path: str, md5: str=None):
"""
Download and load a state dict from url
"""
if not os.path.isdir(path):
os.makedirs(path)
download.get_path_from_url(url, path, md5)
return load_state_dict(os.path.join(path, os.path.basename(url)))

@ -0,0 +1,53 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
This module is used to store environmental variables in PaddleAudio.
PPAUDIO_HOME --> the root directory for storing PaddleAudio related data. Default to ~/.paddleaudio. Users can change the
default value through the PPAUDIO_HOME environment variable.
MODEL_HOME --> Store model files.
DATA_HOME --> Store automatically downloaded datasets.
'''
import os
def _get_user_home():
return os.path.expanduser('~')
def _get_ppaudio_home():
if 'PPAUDIO_HOME' in os.environ:
home_path = os.environ['PPAUDIO_HOME']
if os.path.exists(home_path):
if os.path.isdir(home_path):
return home_path
else:
raise RuntimeError(
'The environment variable PPAUDIO_HOME {} is not a directory.'.
format(home_path))
else:
return home_path
return os.path.join(_get_user_home(), '.paddleaudio')
def _get_sub_home(directory):
home = os.path.join(_get_ppaudio_home(), directory)
if not os.path.exists(home):
os.makedirs(home)
return home
USER_HOME = _get_user_home()
PPAUDIO_HOME = _get_ppaudio_home()
MODEL_HOME = _get_sub_home('models')
DATA_HOME = _get_sub_home('datasets')

@ -0,0 +1,20 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['ParameterError']
class ParameterError(Exception):
"""Exception class for Parameter checking"""
pass

@ -0,0 +1,136 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import functools
import logging
import threading
import time
import colorlog
loggers = {}
log_config = {
'DEBUG': {
'level': 10,
'color': 'purple'
},
'INFO': {
'level': 20,
'color': 'green'
},
'TRAIN': {
'level': 21,
'color': 'cyan'
},
'EVAL': {
'level': 22,
'color': 'blue'
},
'WARNING': {
'level': 30,
'color': 'yellow'
},
'ERROR': {
'level': 40,
'color': 'red'
},
'CRITICAL': {
'level': 50,
'color': 'bold_red'
}
}
class Logger(object):
'''
Deafult logger in PaddleAudio
Args:
name(str) : Logger name, default is 'PaddleAudio'
'''
def __init__(self, name: str=None):
name = 'PaddleAudio' if not name else name
self.logger = logging.getLogger(name)
for key, conf in log_config.items():
logging.addLevelName(conf['level'], key)
self.__dict__[key] = functools.partial(self.__call__, conf['level'])
self.__dict__[key.lower()] = functools.partial(self.__call__,
conf['level'])
self.format = colorlog.ColoredFormatter(
'%(log_color)s[%(asctime)-15s] [%(levelname)8s]%(reset)s - %(message)s',
log_colors={key: conf['color']
for key, conf in log_config.items()})
self.handler = logging.StreamHandler()
self.handler.setFormatter(self.format)
self.logger.addHandler(self.handler)
self.logLevel = 'DEBUG'
self.logger.setLevel(logging.DEBUG)
self.logger.propagate = False
self._is_enable = True
def disable(self):
self._is_enable = False
def enable(self):
self._is_enable = True
@property
def is_enable(self) -> bool:
return self._is_enable
def __call__(self, log_level: str, msg: str):
if not self.is_enable:
return
self.logger.log(log_level, msg)
@contextlib.contextmanager
def use_terminator(self, terminator: str):
old_terminator = self.handler.terminator
self.handler.terminator = terminator
yield
self.handler.terminator = old_terminator
@contextlib.contextmanager
def processing(self, msg: str, interval: float=0.1):
'''
Continuously print a progress bar with rotating special effects.
Args:
msg(str): Message to be printed.
interval(float): Rotation interval. Default to 0.1.
'''
end = False
def _printer():
index = 0
flags = ['\\', '|', '/', '-']
while not end:
flag = flags[index % len(flags)]
with self.use_terminator('\r'):
self.info('{}: {}'.format(msg, flag))
time.sleep(interval)
index += 1
t = threading.Thread(target=_printer)
t.start()
yield
end = True
logger = Logger()

@ -0,0 +1,67 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import time
class Timer(object):
'''Calculate runing speed and estimated time of arrival(ETA)'''
def __init__(self, total_step: int):
self.total_step = total_step
self.last_start_step = 0
self.current_step = 0
self._is_running = True
def start(self):
self.last_time = time.time()
self.start_time = time.time()
def stop(self):
self._is_running = False
self.end_time = time.time()
def count(self) -> int:
if not self.current_step >= self.total_step:
self.current_step += 1
return self.current_step
@property
def timing(self) -> float:
run_steps = self.current_step - self.last_start_step
self.last_start_step = self.current_step
time_used = time.time() - self.last_time
self.last_time = time.time()
return run_steps / time_used
@property
def is_running(self) -> bool:
return self._is_running
@property
def eta(self) -> str:
if not self.is_running:
return '00:00:00'
scale = self.total_step / self.current_step
remaining_time = (time.time() - self.start_time) * scale
return seconds_to_hms(remaining_time)
def seconds_to_hms(seconds: int) -> str:
'''Convert the number of seconds to hh:mm:ss'''
h = math.floor(seconds / 3600)
m = math.floor((seconds - h * 3600) / 60)
s = int(seconds - h * 3600 - m * 60)
hms_str = '{:0>2}:{:0>2}:{:0>2}'.format(h, m, s)
return hms_str

@ -0,0 +1,4 @@
numpy >= 1.15.0
resampy >= 0.2.2
scipy >= 1.0.0
soundfile >= 0.9.0

@ -0,0 +1,43 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import setuptools
# set the version here
version = '0.1.0a'
with open("README.md", "r") as fh:
long_description = fh.read()
setuptools.setup(
name="paddleaudio",
version=version,
author="",
author_email="",
description="PaddleAudio, in development",
long_description=long_description,
long_description_content_type="text/markdown",
url="",
packages=setuptools.find_packages(exclude=["build*", "test*", "examples*"]),
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires='>=3.6',
install_requires=[
'numpy >= 1.15.0', 'scipy >= 1.0.0', 'resampy >= 0.2.2',
'soundfile >= 0.9.0'
],
extras_require={'dev': ['pytest>=3.7', 'librosa>=0.7.2']
} # for dev only, install: pip install -e .[dev]
)

@ -0,0 +1,41 @@
# PaddleAudio Testing Guide
# Testing
First clone a version of the project by
```
git clone https://github.com/PaddlePaddle/models.git
```
Then install the project in your virtual environment.
```
cd models/PaddleAudio
python setup.py bdist_wheel
pip install -e .[dev]
```
The requirements for testing will be installed along with PaddleAudio.
Now run
```
pytest test
```
If it goes well, you will see outputs like these:
```
platform linux -- Python 3.7.10, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: ./models/PaddleAudio
plugins: hydra-core-1.0.6
collected 16 items
test/unit_test/test_backend.py ........... [ 68%]
test/unit_test/test_features.py ..... [100%]
==================================================== warnings summary ====================================================
.
.
.
-- Docs: https://docs.pytest.org/en/stable/warnings.html
============================================ 16 passed, 11 warnings in 6.76s =============================================
```

@ -0,0 +1,114 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import librosa
import numpy as np
import pytest
import paddleaudio
TEST_FILE = './test/data/test_audio.wav'
def relative_err(a, b, real=True):
"""compute relative error of two matrices or vectors"""
if real:
return np.sum((a - b)**2) / (EPS + np.sum(a**2) + np.sum(b**2))
else:
err = np.sum((a.real - b.real)**2) / \
(EPS + np.sum(a.real**2) + np.sum(b.real**2))
err += np.sum((a.imag - b.imag)**2) / \
(EPS + np.sum(a.imag**2) + np.sum(b.imag**2))
return err
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
def load_audio():
x, r = librosa.load(TEST_FILE, sr=16000)
print(f'librosa: mean: {np.mean(x)}, std:{np.std(x)}')
return x, r
# start testing
x, r = load_audio()
EPS = 1e-8
def test_load():
s, r = paddleaudio.load(TEST_FILE, sr=16000)
assert r == 16000
assert s.dtype == 'float32'
s, r = paddleaudio.load(
TEST_FILE, sr=16000, offset=1, duration=2, dtype='int16')
assert len(s) / r == 2.0
assert r == 16000
assert s.dtype == 'int16'
def test_depth_convert():
y = paddleaudio.depth_convert(x, 'int16')
assert len(y) == len(x)
assert y.dtype == 'int16'
assert np.max(y) <= 32767
assert np.min(y) >= -32768
assert np.std(y) > EPS
y = paddleaudio.depth_convert(x, 'int8')
assert len(y) == len(x)
assert y.dtype == 'int8'
assert np.max(y) <= 127
assert np.min(y) >= -128
assert np.std(y) > EPS
# test case for resample
rs_test_data = [
(32000, 'kaiser_fast'),
(16000, 'kaiser_fast'),
(8000, 'kaiser_fast'),
(32000, 'kaiser_best'),
(16000, 'kaiser_best'),
(8000, 'kaiser_best'),
(22050, 'kaiser_best'),
(44100, 'kaiser_best'),
]
@pytest.mark.parametrize('sr,mode', rs_test_data)
def test_resample(sr, mode):
y = paddleaudio.resample(x, 16000, sr, mode=mode)
factor = sr / 16000
err = relative_err(len(y), len(x) * factor)
print('err:', err)
assert err < EPS
def test_normalize():
y = paddleaudio.normalize(x, norm_type='linear', mul_factor=0.5)
assert np.max(y) < 0.5 + EPS
y = paddleaudio.normalize(x, norm_type='linear', mul_factor=2.0)
assert np.max(y) <= 2.0 + EPS
y = paddleaudio.normalize(x, norm_type='gaussian', mul_factor=1.0)
print('np.std(y):', np.std(y))
assert np.abs(np.std(y) - 1.0) < EPS
if __name__ == '__main__':
test_load()
test_depth_convert()
test_resample(22050, 'kaiser_fast')
test_normalize()

@ -0,0 +1,144 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import librosa
import numpy as np
import pytest
import paddleaudio as pa
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
def load_audio():
x, r = librosa.load('./test/data/test_audio.wav')
#x,r = librosa.load('../data/test_audio.wav',sr=16000)
return x, r
## start testing
x, r = load_audio()
EPS = 1e-8
def relative_err(a, b, real=True):
"""compute relative error of two matrices or vectors"""
if real:
return np.sum((a - b)**2) / (EPS + np.sum(a**2) + np.sum(b**2))
else:
err = np.sum((a.real - b.real)**2) / (
EPS + np.sum(a.real**2) + np.sum(b.real**2))
err += np.sum((a.imag - b.imag)**2) / (
EPS + np.sum(a.imag**2) + np.sum(b.imag**2))
return err
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_melspectrogram():
a = pa.melspectrogram(
x,
window_size=512,
sr=16000,
hop_length=320,
n_mels=64,
fmin=50,
to_db=False, )
b = librosa.feature.melspectrogram(
x,
sr=16000,
n_fft=512,
win_length=512,
hop_length=320,
n_mels=64,
fmin=50)
assert relative_err(a, b) < EPS
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_melspectrogram_db():
a = pa.melspectrogram(
x,
window_size=512,
sr=16000,
hop_length=320,
n_mels=64,
fmin=50,
to_db=True,
ref=1.0,
amin=1e-10,
top_db=None)
b = librosa.feature.melspectrogram(
x,
sr=16000,
n_fft=512,
win_length=512,
hop_length=320,
n_mels=64,
fmin=50)
b = pa.power_to_db(b, ref=1.0, amin=1e-10, top_db=None)
assert relative_err(a, b) < EPS
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_stft():
a = pa.stft(x, n_fft=1024, hop_length=320, win_length=512)
b = librosa.stft(x, n_fft=1024, hop_length=320, win_length=512)
assert a.shape == b.shape
assert relative_err(a, b, real=False) < EPS
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_split_frames():
a = librosa.util.frame(x, frame_length=512, hop_length=320)
b = pa.split_frames(x, frame_length=512, hop_length=320)
assert relative_err(a, b) < EPS
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_mfcc():
kwargs = {
'window_size': 512,
'hop_length': 320,
'n_mels': 64,
'fmin': 50,
'to_db': False
}
a = pa.mfcc(
x,
#sample_rate=16000,
spect=None,
n_mfcc=20,
dct_type=2,
norm='ortho',
lifter=0,
**kwargs)
S = librosa.feature.melspectrogram(
x,
sr=16000,
n_fft=512,
win_length=512,
hop_length=320,
n_mels=64,
fmin=50)
b = librosa.feature.mfcc(
x, sr=16000, S=S, n_mfcc=20, dct_type=2, norm='ortho', lifter=0)
assert relative_err(a, b) < EPS
if __name__ == '__main__':
test_melspectrogram()
test_melspectrogram_db()
test_stft()
test_split_frames()
test_mfcc()
Loading…
Cancel
Save