fix libri script

pull/538/head
Hui Zhang 5 years ago
parent 08d17dc208
commit ade739bf14

@ -29,11 +29,11 @@ model:
use_gru: False use_gru: False
share_rnn_weights: True share_rnn_weights: True
training: training:
n_epoch: 50 n_epoch: 20
lr: 5e-4 lr: 5e-4
lr_decay: 0.83 lr_decay: 0.83
weight_decay: 1e-06 weight_decay: 1e-06
global_grad_clip: 5.0 global_grad_clip: 400.0
decoding: decoding:
batch_size: 128 batch_size: 128
error_rate_type: wer error_rate_type: wer

@ -10,8 +10,7 @@ python3 -u ${BIN_DIR}/infer.py \
--device 'gpu' \ --device 'gpu' \
--nproc 1 \ --nproc 1 \
--config conf/deepspeech2.yaml \ --config conf/deepspeech2.yaml \
--output ckpt --checkpoint_path ${1}
if [ $? -ne 0 ]; then if [ $? -ne 0 ]; then
echo "Failed in inference!" echo "Failed in inference!"

@ -1,46 +0,0 @@
#! /usr/bin/env bash
# download language model
bash local/download_lm_en.sh
if [ $? -ne 0 ]; then
exit 1
fi
# download well-trained model
bash local/download_model.sh
if [ $? -ne 0 ]; then
exit 1
fi
# infer
CUDA_VISIBLE_DEVICES=0 \
python3 -u ${MAIN_ROOT}/infer.py \
--num_samples=10 \
--beam_size=500 \
--num_proc_bsearch=8 \
--num_conv_layers=2 \
--num_rnn_layers=3 \
--rnn_layer_size=2048 \
--alpha=2.5 \
--beta=0.3 \
--cutoff_prob=1.0 \
--cutoff_top_n=40 \
--use_gru=False \
--use_gpu=True \
--share_rnn_weights=True \
--infer_manifest="data/manifest.test-clean" \
--mean_std_path="${MAIN_ROOT}/models/librispeech/mean_std.npz" \
--vocab_path="${MAIN_ROOT}/models/librispeech/vocab.txt" \
--model_path="${MAIN_ROOT}/models/librispeech" \
--lang_model_path="${MAIN_ROOT}/models/lm/common_crawl_00.prune01111.trie.klm" \
--decoding_method="ctc_beam_search" \
--error_rate_type="wer" \
--specgram_type="linear"
if [ $? -ne 0 ]; then
echo "Failed in inference!"
exit 1
fi
exit 0

@ -1,47 +0,0 @@
#! /usr/bin/env bash
# download language model
bash local/download_lm_en.sh
if [ $? -ne 0 ]; then
exit 1
fi
# download well-trained model
bash local/download_model.sh
if [ $? -ne 0 ]; then
exit 1
fi
# evaluate model
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 -u $MAIN_ROOT/test.py \
--batch_size=128 \
--beam_size=500 \
--num_proc_bsearch=8 \
--num_conv_layers=2 \
--num_rnn_layers=3 \
--rnn_layer_size=2048 \
--alpha=2.5 \
--beta=0.3 \
--cutoff_prob=1.0 \
--cutoff_top_n=40 \
--use_gru=False \
--use_gpu=True \
--share_rnn_weights=True \
--test_manifest="data/manifest.test-clean" \
--mean_std_path="$MAIN_ROOT/models/librispeech/mean_std.npz" \
--vocab_path="$MAIN_ROOT/models/librispeech/vocab.txt" \
--model_path="$MAIN_ROOT/models/librispeech" \
--lang_model_path="$MAIN_ROOT/models/lm/common_crawl_00.prune01111.trie.klm" \
--decoding_method="ctc_beam_search" \
--error_rate_type="wer" \
--specgram_type="linear"
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
exit 0
Loading…
Cancel
Save