[TTS]add VITS inference (#2972)
parent
ff8c56b08b
commit
ad239eb444
@ -0,0 +1 @@
|
||||
../../tts3/local/export2lite.sh
|
@ -0,0 +1,17 @@
|
||||
#!/bin/bash
|
||||
|
||||
train_output_path=$1
|
||||
add_blank=$2
|
||||
|
||||
stage=0
|
||||
stop_stage=0
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
python3 ${BIN_DIR}/inference.py \
|
||||
--inference_dir=${train_output_path}/inference \
|
||||
--am=vits_csmsc \
|
||||
--text=${BIN_DIR}/../sentences.txt \
|
||||
--output_dir=${train_output_path}/pd_infer_out \
|
||||
--phones_dict=dump/phone_id_map.txt \
|
||||
--add-blank=${add_blank}
|
||||
fi
|
@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
train_output_path=$1
|
||||
add_blank=$2
|
||||
|
||||
stage=0
|
||||
stop_stage=0
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
python3 ${BIN_DIR}/../lite_predict.py \
|
||||
--inference_dir=${train_output_path}/pdlite \
|
||||
--am=vits_csmsc \
|
||||
--text=${BIN_DIR}/../sentences.txt \
|
||||
--output_dir=${train_output_path}/lite_infer_out \
|
||||
--phones_dict=dump/phone_id_map.txt \
|
||||
--add-blank=${add_blank}
|
||||
fi
|
||||
|
@ -0,0 +1,174 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
import paddle
|
||||
import soundfile as sf
|
||||
from timer import timer
|
||||
|
||||
from paddlespeech.t2s.exps.syn_utils import get_am_output
|
||||
from paddlespeech.t2s.exps.syn_utils import get_frontend
|
||||
from paddlespeech.t2s.exps.syn_utils import get_predictor
|
||||
from paddlespeech.t2s.exps.syn_utils import get_sentences
|
||||
from paddlespeech.t2s.utils import str2bool
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Paddle Infernce with acoustic model & vocoder.")
|
||||
# acoustic model
|
||||
parser.add_argument(
|
||||
'--am',
|
||||
type=str,
|
||||
default='vits_csmsc',
|
||||
choices=['vits_csmsc', 'vits_aishell3'],
|
||||
help='Choose acoustic model type of tts task.')
|
||||
parser.add_argument(
|
||||
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
|
||||
parser.add_argument(
|
||||
"--speaker_dict", type=str, default=None, help="speaker id map file.")
|
||||
parser.add_argument(
|
||||
'--spk_id',
|
||||
type=int,
|
||||
default=0,
|
||||
help='spk id for multi speaker acoustic model')
|
||||
# other
|
||||
parser.add_argument(
|
||||
'--lang',
|
||||
type=str,
|
||||
default='zh',
|
||||
help='Choose model language. zh or en or mix')
|
||||
parser.add_argument(
|
||||
"--text",
|
||||
type=str,
|
||||
help="text to synthesize, a 'utt_id sentence' pair per line")
|
||||
parser.add_argument(
|
||||
"--add-blank",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="whether to add blank between phones")
|
||||
parser.add_argument(
|
||||
"--inference_dir", type=str, help="dir to save inference models")
|
||||
parser.add_argument("--output_dir", type=str, help="output dir")
|
||||
# inference
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="whether to use TensorRT or not in GPU", )
|
||||
parser.add_argument(
|
||||
"--use_mkldnn",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="whether to use MKLDNN or not in CPU.", )
|
||||
parser.add_argument(
|
||||
"--precision",
|
||||
type=str,
|
||||
default='fp32',
|
||||
choices=['fp32', 'fp16', 'bf16', 'int8'],
|
||||
help="mode of running")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
default="gpu",
|
||||
choices=["gpu", "cpu"],
|
||||
help="Device selected for inference.", )
|
||||
parser.add_argument('--cpu_threads', type=int, default=1)
|
||||
|
||||
args, _ = parser.parse_known_args()
|
||||
return args
|
||||
|
||||
|
||||
# only inference for models trained with csmsc now
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
paddle.set_device(args.device)
|
||||
|
||||
# frontend
|
||||
frontend = get_frontend(lang=args.lang, phones_dict=args.phones_dict)
|
||||
|
||||
# am_predictor
|
||||
am_predictor = get_predictor(
|
||||
model_dir=args.inference_dir,
|
||||
model_file=args.am + ".pdmodel",
|
||||
params_file=args.am + ".pdiparams",
|
||||
device=args.device,
|
||||
use_trt=args.use_trt,
|
||||
use_mkldnn=args.use_mkldnn,
|
||||
cpu_threads=args.cpu_threads,
|
||||
precision=args.precision)
|
||||
# model: {model_name}_{dataset}
|
||||
am_dataset = args.am[args.am.rindex('_') + 1:]
|
||||
|
||||
output_dir = Path(args.output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
sentences = get_sentences(text_file=args.text, lang=args.lang)
|
||||
|
||||
merge_sentences = True
|
||||
add_blank = args.add_blank
|
||||
# vits's fs is 22050
|
||||
fs = 22050
|
||||
# warmup
|
||||
for utt_id, sentence in sentences[:3]:
|
||||
with timer() as t:
|
||||
wav = get_am_output(
|
||||
input=sentence,
|
||||
am_predictor=am_predictor,
|
||||
am=args.am,
|
||||
frontend=frontend,
|
||||
lang=args.lang,
|
||||
merge_sentences=merge_sentences,
|
||||
speaker_dict=args.speaker_dict,
|
||||
spk_id=args.spk_id,
|
||||
add_blank=add_blank)
|
||||
speed = wav.size / t.elapse
|
||||
rtf = fs / speed
|
||||
print(
|
||||
f"{utt_id}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
||||
)
|
||||
|
||||
print("warm up done!")
|
||||
|
||||
N = 0
|
||||
T = 0
|
||||
for utt_id, sentence in sentences:
|
||||
with timer() as t:
|
||||
wav = get_am_output(
|
||||
input=sentence,
|
||||
am_predictor=am_predictor,
|
||||
am=args.am,
|
||||
frontend=frontend,
|
||||
lang=args.lang,
|
||||
merge_sentences=merge_sentences,
|
||||
speaker_dict=args.speaker_dict,
|
||||
spk_id=args.spk_id,
|
||||
add_blank=add_blank)
|
||||
|
||||
N += wav.size
|
||||
T += t.elapse
|
||||
speed = wav.size / t.elapse
|
||||
rtf = fs / speed
|
||||
sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=fs)
|
||||
print(
|
||||
f"{utt_id}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
||||
)
|
||||
|
||||
print(f"{utt_id} done!")
|
||||
print(f"generation speed: {N / T}Hz, RTF: {fs / (N / T) }")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,147 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
import soundfile as sf
|
||||
from timer import timer
|
||||
|
||||
from paddlespeech.t2s.exps.lite_syn_utils import get_lite_am_output
|
||||
from paddlespeech.t2s.exps.lite_syn_utils import get_lite_predictor
|
||||
from paddlespeech.t2s.exps.syn_utils import get_frontend
|
||||
from paddlespeech.t2s.exps.syn_utils import get_sentences
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Paddle Infernce with acoustic model & vocoder.")
|
||||
# acoustic model
|
||||
parser.add_argument(
|
||||
'--am',
|
||||
type=str,
|
||||
default='vits_csmsc',
|
||||
choices=[
|
||||
'vits_csmsc',
|
||||
'vits_aishell3',
|
||||
],
|
||||
help='Choose acoustic model type of tts task.')
|
||||
parser.add_argument(
|
||||
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
|
||||
parser.add_argument(
|
||||
"--speaker_dict", type=str, default=None, help="speaker id map file.")
|
||||
parser.add_argument(
|
||||
'--spk_id',
|
||||
type=int,
|
||||
default=0,
|
||||
help='spk id for multi speaker acoustic model')
|
||||
# other
|
||||
parser.add_argument(
|
||||
'--lang',
|
||||
type=str,
|
||||
default='zh',
|
||||
help='Choose model language. zh or en or mix')
|
||||
parser.add_argument(
|
||||
"--text",
|
||||
type=str,
|
||||
help="text to synthesize, a 'utt_id sentence' pair per line")
|
||||
parser.add_argument(
|
||||
"--add-blank",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="whether to add blank between phones")
|
||||
parser.add_argument(
|
||||
"--inference_dir", type=str, help="dir to save inference models")
|
||||
parser.add_argument("--output_dir", type=str, help="output dir")
|
||||
|
||||
args, _ = parser.parse_known_args()
|
||||
return args
|
||||
|
||||
|
||||
# only inference for models trained with csmsc now
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
# frontend
|
||||
frontend = get_frontend(
|
||||
lang=args.lang,
|
||||
phones_dict=args.phones_dict,
|
||||
tones_dict=args.tones_dict)
|
||||
|
||||
# am_predictor
|
||||
am_predictor = get_lite_predictor(
|
||||
model_dir=args.inference_dir, model_file=args.am + "_x86.nb")
|
||||
# model: {model_name}_{dataset}
|
||||
am_dataset = args.am[args.am.rindex('_') + 1:]
|
||||
|
||||
output_dir = Path(args.output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
sentences = get_sentences(text_file=args.text, lang=args.lang)
|
||||
|
||||
merge_sentences = True
|
||||
add_blank = args.add_blank
|
||||
fs = 22050
|
||||
# warmup
|
||||
for utt_id, sentence in sentences[:3]:
|
||||
with timer() as t:
|
||||
wav = get_lite_am_output(
|
||||
input=sentence,
|
||||
am_predictor=am_predictor,
|
||||
am=args.am,
|
||||
frontend=frontend,
|
||||
lang=args.lang,
|
||||
merge_sentences=merge_sentences,
|
||||
speaker_dict=args.speaker_dict,
|
||||
spk_id=args.spk_id,
|
||||
add_blank=add_blank)
|
||||
|
||||
speed = wav.size / t.elapse
|
||||
rtf = fs / speed
|
||||
print(
|
||||
f"{utt_id}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
||||
)
|
||||
|
||||
print("warm up done!")
|
||||
|
||||
N = 0
|
||||
T = 0
|
||||
for utt_id, sentence in sentences:
|
||||
with timer() as t:
|
||||
wav = get_lite_am_output(
|
||||
input=sentence,
|
||||
am_predictor=am_predictor,
|
||||
am=args.am,
|
||||
frontend=frontend,
|
||||
lang=args.lang,
|
||||
merge_sentences=merge_sentences,
|
||||
speaker_dict=args.speaker_dict,
|
||||
spk_id=args.spk_id,
|
||||
add_blank=add_blank)
|
||||
|
||||
N += wav.size
|
||||
T += t.elapse
|
||||
speed = wav.size / t.elapse
|
||||
rtf = fs / speed
|
||||
|
||||
sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=fs)
|
||||
print(
|
||||
f"{utt_id}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
||||
)
|
||||
|
||||
print(f"{utt_id} done!")
|
||||
print(f"generation speed: {N / T}Hz, RTF: {fs / (N / T) }")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in new issue