Merge pull request #698 from yt605155624/thchs30_MFA

Thchs30 mfa
pull/731/head
Hui Zhang 4 years ago committed by GitHub
commit ab5411ec16
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -84,8 +84,9 @@ FILES = glob.glob('kenlm/util/*.cc') \
FILES += glob.glob('openfst-1.6.3/src/lib/*.cc') FILES += glob.glob('openfst-1.6.3/src/lib/*.cc')
FILES = [ FILES = [
fn for fn in FILES if not (fn.endswith('main.cc') or fn.endswith('test.cc') fn for fn in FILES
or fn.endswith('unittest.cc')) if not (fn.endswith('main.cc') or fn.endswith('test.cc') or fn.endswith(
'unittest.cc'))
] ]
LIBS = ['stdc++'] LIBS = ['stdc++']

@ -0,0 +1,42 @@
# THCHS-30 数据集强制对齐实验
-----
本实验对 THCHS-30 中文数据集用 [Montreal-Forced-Aligner](https://montreal-forced-aligner.readthedocs.io/en/latest/index.html) 进行强制对齐。
THCHS-30 的文本标注数据分为:
1. 汉字级别word该数据集用空格对词进行了划分我们在使用时按照将不同字之间按空格划分
2. 音节级别syllable即汉语中的一个拼音
3. 音素级别phone一个拼音有多个音素组成汉语的声母韵母可以理解为音素不同的数据集有各自的音素标准THCHS-30 数据集与标贝 BZNSYP 数据集的音素标准略有不同
数据 A11_0 文本示例如下:
```
绿 是 阳春 烟 景 大块 文章 的 底色 四月 的 林 峦 更是 绿 得 鲜活 秀媚 诗意 盎然↩
lv4 shi4 yang2 chun1 yan1 jing3 da4 kuai4 wen2 zhang1 de5 di3 se4 si4 yue4 de5 lin2 luan2 geng4 shi4 lv4 de5 xian1 huo2 xiu4 mei4 shi1 yi4 ang4 ran2↩
l v4 sh ix4 ii iang2 ch un1 ii ian1 j ing3 d a4 k uai4 uu un2 zh ang1 d e5 d i3 s e4 s iy4 vv ve4 d e5 l in2 l uan2 g eng4 sh ix4 l v4 d e5 x ian1 h uo2 x iu4 m ei4 sh ix1 ii i4 aa ang4 r an2
```
## 开始实验
---
在本项目的 根目录/tools 执行
```
make
```
下载 MFA 的可执行包(也会同时下载本项目所需的其他工具)
执行如下命令:
```
cd a0
./run.sh
```
应用程序会自动下载 THCHS-30数据集处理成 MFA 所需的文件格式并开始训练,您可以修改 `run.sh` 中的参数 `LEXICON_NAME` 来决定您需要强制对齐的级别word、syllable 和 phone
## MFA 所使用的字典
---
MFA 字典的格式请参考: [MFA 官方文档 Dictionary format ](https://montreal-forced-aligner.readthedocs.io/en/latest/dictionary.html)
phone.lexicon 直接使用的是 `THCHS-30/data_thchs30/lm_phone/lexicon.txt`
word.lexicon 考虑到了中文的多音字,使用**带概率的字典**, 生成规则请参考 `local/gen_word2phone.py`
`syllable.lexicon` 获取自 [DNSun/thchs30-pinyin2tone](https://github.com/DNSun/thchs30-pinyin2tone)
## 对齐结果
---
我们提供了三种级别 MFA 训练好的对齐结果、模型和字典(`syllable.lexicon` 在 `data/dict` 中,`phone.lexicon` 和` word.lexicon` 运行数据预处理代码后会自动从原始数据集复制或生成)
**phone 级别:** [phone.lexicon](https://paddlespeech.bj.bcebos.com/MFA/THCHS30/phone/phone.lexicon)、 [对齐结果](https://paddlespeech.bj.bcebos.com/MFA/THCHS30/phone/thchs30_alignment.tar.gz)、[模型](https://paddlespeech.bj.bcebos.com/MFA/THCHS30/phone/thchs30_model.zip)
**syllabel 级别:** [syllable.lexicon](https://paddlespeech.bj.bcebos.com/MFA/THCHS30/syllable/syllable.lexicon)、[对齐结果](https://paddlespeech.bj.bcebos.com/MFA/THCHS30/syllable/thchs30_alignment.tar.gz)、[模型](https://paddlespeech.bj.bcebos.com/MFA/THCHS30/syllable/thchs30_model.zip)
**word 级别:** [word.lexicon](https://paddlespeech.bj.bcebos.com/MFA/THCHS30/word/word.lexicon)、[对齐结果](https://paddlespeech.bj.bcebos.com/MFA/THCHS30/word/thchs30_alignment.tar.gz)、[模型](https://paddlespeech.bj.bcebos.com/MFA/THCHS30/word/thchs30_model.zip)
随后,您可以参考 [MFA 官方文档 Align using pretrained models](https://montreal-forced-aligner.readthedocs.io/en/stable/aligning.html#align-using-pretrained-models) 使用我们给您提供好的模型直接对自己的数据集进行强制对齐,注意,您需要使用和模型对应的 lexicon 文件,当文本是汉字时,您需要用空格把不同的**汉字**(而不是词语)分开

File diff suppressed because it is too large Load Diff

@ -0,0 +1,47 @@
#! /usr/bin/env bash
stage=-1
stop_stage=100
source ${MAIN_ROOT}/utils/parse_options.sh
mkdir -p data
TARGET_DIR=${MAIN_ROOT}/examples/dataset
mkdir -p ${TARGET_DIR}
LEXICON_NAME=$1
# download data, generate manifests
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
python3 ${TARGET_DIR}/thchs30/thchs30.py \
--manifest_prefix="data/manifest" \
--target_dir="${TARGET_DIR}/thchs30"
if [ $? -ne 0 ]; then
echo "Prepare THCHS-30 failed. Terminated."
exit 1
fi
fi
# dump manifest to data/
python3 ${MAIN_ROOT}/utils/dump_manifest.py --manifest-path=data/manifest.train --output-dir=data
# copy files to data/dict to gen word.lexicon
cp ${TARGET_DIR}/thchs30/data_thchs30/lm_word/lexicon.txt data/dict/lm_word_lexicon_1
cp ${TARGET_DIR}/thchs30/resource/dict/lexicon.txt data/dict/lm_word_lexicon_2
# copy phone.lexicon to data/dict
cp ${TARGET_DIR}/thchs30/data_thchs30/lm_phone/lexicon.txt data/dict/phone.lexicon
# gen word.lexicon
python local/gen_word2phone.py --root-dir=data/dict --output-dir=data/dict
# reorganize dataset for MFA
if [ ! -d $EXP_DIR/thchs30_corpus ]; then
echo "reorganizing thchs30 corpus..."
python local/reorganize_thchs30.py --root-dir=data --output-dir=data/thchs30_corpus --script-type=$LEXICON_NAME
echo "reorganization done."
fi
echo "THCHS-30 data preparation done."
exit 0

@ -0,0 +1,94 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Gen Chinese characters to THCHS30-30 phone lexicon using THCHS30-30's lexicon
file1: THCHS-30/data_thchs30/lm_word/lexicon.txt
file2: THCHS-30/resource/dict/lexicon.txt
"""
import argparse
from collections import defaultdict
from pathlib import Path
from typing import Union
# key: (cn, ('ee', 'er4'))value: count
cn_phones_counter = defaultdict(int)
# key: cn, value: list of (phones, num)
cn_counter = defaultdict(list)
# key: cn, value: list of (phones, probabilities)
cn_counter_p = defaultdict(list)
def is_Chinese(ch):
if '\u4e00' <= ch <= '\u9fff':
return True
return False
def proc_line(line):
line = line.strip()
if is_Chinese(line[0]):
line_list = line.split()
cn_list = line_list[0]
phone_list = line_list[1:]
if len(cn_list) == len(phone_list) / 2:
new_phone_list = [(phone_list[i], phone_list[i + 1])
for i in range(0, len(phone_list), 2)]
assert len(cn_list) == len(new_phone_list)
for idx, cn in enumerate(cn_list):
phones = new_phone_list[idx]
cn_phones_counter[(cn, phones)] += 1
def gen_lexicon(root_dir: Union[str, Path], output_dir: Union[str, Path]):
root_dir = Path(root_dir).expanduser()
output_dir = Path(output_dir).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
file1 = root_dir / "lm_word_lexicon_1"
file2 = root_dir / "lm_word_lexicon_2"
write_file = output_dir / "word.lexicon"
with open(file1, "r") as f1:
for line in f1:
proc_line(line)
with open(file2, "r") as f2:
for line in f2:
proc_line(line)
for key in cn_phones_counter:
cn = key[0]
cn_counter[cn].append((key[1], cn_phones_counter[key]))
for key in cn_counter:
phone_count_list = cn_counter[key]
count_sum = sum([x[1] for x in phone_count_list])
for item in phone_count_list:
p = item[1] / count_sum
p = round(p, 2)
if p > 0:
cn_counter_p[key].append((item[0], p))
with open(write_file, "w") as wf:
for key in cn_counter_p:
phone_p_list = cn_counter_p[key]
for item in phone_p_list:
phones, p = item
wf.write(key + " " + str(p) + " " + " ".join(phones) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Gen Chinese characters to phone lexicon for THCHS-30 dataset"
)
parser.add_argument(
"--root-dir", type=str, help="dir to thchs30 lm_word_lexicons")
parser.add_argument("--output-dir", type=str, help="path to save outputs")
args = parser.parse_args()
gen_lexicon(args.root_dir, args.output_dir)

@ -0,0 +1,83 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Recorganize THCHS-30 for MFA
read manifest.train from root-dir
Link *.wav to output-dir
dump *.lab from manifest.train, such as: textsyllable and phone
Manifest file is a json-format file with each line containing the
meta data (i.e. audio filepath, transcript and audio duration)
"""
import argparse
import os
from pathlib import Path
from typing import Union
def link_wav(root_dir: Union[str, Path], output_dir: Union[str, Path]):
wav_scp_path = root_dir / 'wav.scp'
with open(wav_scp_path, 'r') as rf:
for line in rf:
utt, feat = line.strip().split()
wav_path = feat
wav_name = wav_path.split("/")[-1]
new_wav_path = output_dir / wav_name
os.symlink(wav_path, new_wav_path)
def write_lab(root_dir: Union[str, Path],
output_dir: Union[str, Path],
script_type='phone'):
# script_type can in {'word', 'syllable', 'phone'}
json_name = 'text.' + script_type
json_path = root_dir / json_name
with open(json_path, 'r') as rf:
for line in rf:
line = line.strip().split()
utt_id = line[0]
context = ' '.join(line[1:])
transcript_name = utt_id + '.lab'
transcript_path = output_dir / transcript_name
with open(transcript_path, 'wt') as wf:
if script_type == 'word':
# add space between chinese char
context = ''.join([f + ' ' for f in context])[:-1]
wf.write(context + "\n")
def reorganize_thchs30(root_dir: Union[str, Path],
output_dir: Union[str, Path]=None,
script_type='phone'):
root_dir = Path(root_dir).expanduser()
output_dir = Path(output_dir).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
link_wav(root_dir, output_dir)
write_lab(root_dir, output_dir, script_type)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Reorganize THCHS-30 dataset for MFA")
parser.add_argument("--root-dir", type=str, help="path to thchs30 dataset.")
parser.add_argument(
"--output-dir",
type=str,
help="path to save outputs(audio and transcriptions)")
parser.add_argument(
"--script-type",
type=str,
default="phone",
help="type of lab ('word'/'syllable'/'phone')")
args = parser.parse_args()
reorganize_thchs30(args.root_dir, args.output_dir, args.script_type)

@ -0,0 +1,13 @@
export MAIN_ROOT=${PWD}/../../../
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
export LC_ALL=C
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib/
# MFA is in tools
export PATH=${MAIN_ROOT}/tools/montreal-forced-aligner/bin:$PATH

@ -0,0 +1,32 @@
#!/bin/bash
set -e
source path.sh
stage=0
stop_stage=100
EXP_DIR=exp
# LEXICON_NAME in {'phone', 'syllable', 'word'}
LEXICON_NAME='phone'
# set MFA num_jobs as half of machine's cpu core number
NUM_JOBS=$((`nproc`/2))
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
# download dataset、unzip and generate manifest
# gen lexicon relink gen dump
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
bash ./local/data.sh $LEXICON_NAME|| exit -1
fi
# run MFA
if [ ! -d "$EXP_DIR/thchs30_alignment" ]; then
echo "Start MFA training..."
mfa_train_and_align data/thchs30_corpus data/dict/$LEXICON_NAME.lexicon $EXP_DIR/thchs30_alignment -o $EXP_DIR/thchs30_model --clean --verbose --temp_directory exp/.mfa_train_and_align --num_jobs $NUM_JOBS
echo "training done! \nresults: $EXP_DIR/thchs30_alignment \nmodel: $EXP_DIR/thchs30_model\n"
fi

@ -1,7 +1,8 @@
SHELL:= /bin/bash
PYTHON:= python3.7 PYTHON:= python3.7
.PHONY: all clean .PHONY: all clean
all: virtualenv kenlm.done sox.done soxbindings.done all: virtualenv kenlm.done sox.done soxbindings.done mfa.done
virtualenv: virtualenv:
test -d venv || virtualenv -p $(PYTHON) venv test -d venv || virtualenv -p $(PYTHON) venv
@ -33,3 +34,8 @@ soxbindings.done:
test -d soxbindings || git clone https://github.com/pseeth/soxbindings.git test -d soxbindings || git clone https://github.com/pseeth/soxbindings.git
source venv/bin/activate; cd soxbindings && python setup.py install source venv/bin/activate; cd soxbindings && python setup.py install
touch soxbindings.done touch soxbindings.done
mfa.done:
test -d montreal-forced-aligner || wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz
tar xvf montreal-forced-aligner_linux.tar.gz
touch mfa.done

@ -0,0 +1,63 @@
#!/usr/bin/env python3
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""format manifest into wav.scp text.word [text.syllable text.phone]"""
import argparse
from pathlib import Path
from typing import Union
from deepspeech.frontend.utility import read_manifest
key_whitelist = set(['feat', 'text', 'syllable', 'phone'])
filename = {
'text': 'text.word',
'syllable': 'text.syllable',
'phone': 'text.phone',
'feat': 'wav.scp',
}
def dump_manifest(manifest_path, output_dir: Union[str, Path]):
output_dir = Path(output_dir).expanduser()
manifest_path = Path(manifest_path).expanduser()
manifest_jsons = read_manifest(manifest_path)
first_line = manifest_jsons[0]
file_map = {}
for k in first_line.keys():
if k not in key_whitelist:
continue
file_map[k] = open(output_dir / filename[k], 'w')
for line_json in manifest_jsons:
for k in line_json.keys():
if k not in key_whitelist:
continue
file_map[k].write(line_json['utt'] + ' ' + line_json[k] + '\n')
for _, file in file_map.items():
file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="dump manifest to wav.scp text.word ...")
parser.add_argument("--manifest-path", type=str, help="path to manifest")
parser.add_argument(
"--output-dir",
type=str,
help="path to save outputs(audio and transcriptions)")
args = parser.parse_args()
dump_manifest(args.manifest_path, args.output_dir)
Loading…
Cancel
Save