commit
ab3097b7fe
@ -0,0 +1,108 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#include "frontend/audio/fbank.h"
|
||||
#include "kaldi/base/kaldi-math.h"
|
||||
#include "kaldi/feat/feature-common.h"
|
||||
#include "kaldi/feat/feature-functions.h"
|
||||
#include "kaldi/matrix/matrix-functions.h"
|
||||
|
||||
namespace ppspeech {
|
||||
|
||||
using kaldi::int32;
|
||||
using kaldi::BaseFloat;
|
||||
using kaldi::Vector;
|
||||
using kaldi::SubVector;
|
||||
using kaldi::VectorBase;
|
||||
using kaldi::Matrix;
|
||||
using std::vector;
|
||||
|
||||
Fbank::Fbank(const FbankOptions& opts,
|
||||
std::unique_ptr<FrontendInterface> base_extractor)
|
||||
: opts_(opts),
|
||||
computer_(opts.fbank_opts),
|
||||
window_function_(computer_.GetFrameOptions()) {
|
||||
base_extractor_ = std::move(base_extractor);
|
||||
chunk_sample_size_ =
|
||||
static_cast<int32>(opts.streaming_chunk * opts.frame_opts.samp_freq);
|
||||
}
|
||||
|
||||
void Fbank::Accept(const VectorBase<BaseFloat>& inputs) {
|
||||
base_extractor_->Accept(inputs);
|
||||
}
|
||||
|
||||
bool Fbank::Read(Vector<BaseFloat>* feats) {
|
||||
Vector<BaseFloat> wav(chunk_sample_size_);
|
||||
bool flag = base_extractor_->Read(&wav);
|
||||
if (flag == false || wav.Dim() == 0) return false;
|
||||
|
||||
// append remaned waves
|
||||
int32 wav_len = wav.Dim();
|
||||
int32 left_len = remained_wav_.Dim();
|
||||
Vector<BaseFloat> waves(left_len + wav_len);
|
||||
waves.Range(0, left_len).CopyFromVec(remained_wav_);
|
||||
waves.Range(left_len, wav_len).CopyFromVec(wav);
|
||||
|
||||
// compute speech feature
|
||||
Compute(waves, feats);
|
||||
|
||||
// cache remaned waves
|
||||
kaldi::FrameExtractionOptions frame_opts = computer_.GetFrameOptions();
|
||||
int32 num_frames = kaldi::NumFrames(waves.Dim(), frame_opts);
|
||||
int32 frame_shift = frame_opts.WindowShift();
|
||||
int32 left_samples = waves.Dim() - frame_shift * num_frames;
|
||||
remained_wav_.Resize(left_samples);
|
||||
remained_wav_.CopyFromVec(
|
||||
waves.Range(frame_shift * num_frames, left_samples));
|
||||
return true;
|
||||
}
|
||||
|
||||
// Compute spectrogram feat
|
||||
bool Fbank::Compute(const Vector<BaseFloat>& waves, Vector<BaseFloat>* feats) {
|
||||
const FrameExtractionOptions& frame_opts = computer_.GetFrameOptions();
|
||||
int32 num_samples = waves.Dim();
|
||||
int32 frame_length = frame_opts.WindowSize();
|
||||
int32 sample_rate = frame_opts.samp_freq;
|
||||
if (num_samples < frame_length) {
|
||||
return true;
|
||||
}
|
||||
|
||||
int32 num_frames = kaldi::NumFrames(num_samples, frame_opts);
|
||||
feats->Rsize(num_frames * Dim());
|
||||
|
||||
Vector<BaseFloat> window;
|
||||
bool need_raw_log_energy = computer_.NeedRawLogEnergy();
|
||||
for (int32 frame = 0; frame < num_frames; frame++) {
|
||||
BaseFloat raw_log_energy = 0.0;
|
||||
kaldi::ExtractWindow(0,
|
||||
waves,
|
||||
frame,
|
||||
frame_opts,
|
||||
window_function_,
|
||||
&window,
|
||||
need_raw_log_energy ? &raw_log_energy : NULL);
|
||||
|
||||
|
||||
Vector<BaseFloat> this_feature(computer_.Dim(), kUndefined);
|
||||
// note: this online feature-extraction code does not support VTLN.
|
||||
BaseFloat vtln_warp = 1.0;
|
||||
computer_.Compute(raw_log_energy, vtln_warp, &window, &this_feature);
|
||||
SubVector<BaseFloat> output_row(feats->Data() + frame * Dim(), Dim());
|
||||
output_row.CopyFromVec(this_feature);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace ppspeech
|
@ -0,0 +1,108 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#include "frontend/audio/mfcc.h"
|
||||
#include "kaldi/base/kaldi-math.h"
|
||||
#include "kaldi/feat/feature-common.h"
|
||||
#include "kaldi/feat/feature-functions.h"
|
||||
#include "kaldi/matrix/matrix-functions.h"
|
||||
|
||||
namespace ppspeech {
|
||||
|
||||
using kaldi::int32;
|
||||
using kaldi::BaseFloat;
|
||||
using kaldi::Vector;
|
||||
using kaldi::SubVector;
|
||||
using kaldi::VectorBase;
|
||||
using kaldi::Matrix;
|
||||
using std::vector;
|
||||
|
||||
Mfcc::Mfcc(const MfccOptions& opts,
|
||||
std::unique_ptr<FrontendInterface> base_extractor)
|
||||
: opts_(opts),
|
||||
computer_(opts.mfcc_opts),
|
||||
window_function_(computer_.GetFrameOptions()) {
|
||||
base_extractor_ = std::move(base_extractor);
|
||||
chunk_sample_size_ =
|
||||
static_cast<int32>(opts.streaming_chunk * opts.frame_opts.samp_freq);
|
||||
}
|
||||
|
||||
void Mfcc::Accept(const VectorBase<BaseFloat>& inputs) {
|
||||
base_extractor_->Accept(inputs);
|
||||
}
|
||||
|
||||
bool Mfcc::Read(Vector<BaseFloat>* feats) {
|
||||
Vector<BaseFloat> wav(chunk_sample_size_);
|
||||
bool flag = base_extractor_->Read(&wav);
|
||||
if (flag == false || wav.Dim() == 0) return false;
|
||||
|
||||
// append remaned waves
|
||||
int32 wav_len = wav.Dim();
|
||||
int32 left_len = remained_wav_.Dim();
|
||||
Vector<BaseFloat> waves(left_len + wav_len);
|
||||
waves.Range(0, left_len).CopyFromVec(remained_wav_);
|
||||
waves.Range(left_len, wav_len).CopyFromVec(wav);
|
||||
|
||||
// compute speech feature
|
||||
Compute(waves, feats);
|
||||
|
||||
// cache remaned waves
|
||||
kaldi::FrameExtractionOptions frame_opts = computer_.GetFrameOptions();
|
||||
int32 num_frames = kaldi::NumFrames(waves.Dim(), frame_opts);
|
||||
int32 frame_shift = frame_opts.WindowShift();
|
||||
int32 left_samples = waves.Dim() - frame_shift * num_frames;
|
||||
remained_wav_.Resize(left_samples);
|
||||
remained_wav_.CopyFromVec(
|
||||
waves.Range(frame_shift * num_frames, left_samples));
|
||||
return true;
|
||||
}
|
||||
|
||||
// Compute spectrogram feat
|
||||
bool Mfcc::Compute(const Vector<BaseFloat>& waves, Vector<BaseFloat>* feats) {
|
||||
const FrameExtractionOptions& frame_opts = computer_.GetFrameOptions();
|
||||
int32 num_samples = waves.Dim();
|
||||
int32 frame_length = frame_opts.WindowSize();
|
||||
int32 sample_rate = frame_opts.samp_freq;
|
||||
if (num_samples < frame_length) {
|
||||
return true;
|
||||
}
|
||||
|
||||
int32 num_frames = kaldi::NumFrames(num_samples, frame_opts);
|
||||
feats->Rsize(num_frames * Dim());
|
||||
|
||||
Vector<BaseFloat> window;
|
||||
bool need_raw_log_energy = computer_.NeedRawLogEnergy();
|
||||
for (int32 frame = 0; frame < num_frames; frame++) {
|
||||
BaseFloat raw_log_energy = 0.0;
|
||||
kaldi::ExtractWindow(0,
|
||||
waves,
|
||||
frame,
|
||||
frame_opts,
|
||||
window_function_,
|
||||
&window,
|
||||
need_raw_log_energy ? &raw_log_energy : NULL);
|
||||
|
||||
|
||||
Vector<BaseFloat> this_feature(computer_.Dim(), kUndefined);
|
||||
// note: this online feature-extraction code does not support VTLN.
|
||||
BaseFloat vtln_warp = 1.0;
|
||||
computer_.Compute(raw_log_energy, vtln_warp, &window, &this_feature);
|
||||
SubVector<BaseFloat> output_row(feats->Data() + frame * Dim(), Dim());
|
||||
output_row.CopyFromVec(this_feature);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace ppspeech
|
Loading…
Reference in new issue