Merge pull request #1765 from zh794390558/fbank

[speechx] fbank and mfcc
pull/1766/head
Hui Zhang 3 years ago committed by GitHub
commit ab3097b7fe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -21,8 +21,10 @@
namespace ppspeech { namespace ppspeech {
// A data source for testing different frontend module.
// It accepts waves or feats. // Simulates audio/feature input, by returning data from a Vector.
// This class is mostly meant to be used for online decoder testing using
// pre-recorded audio/feature
class DataCache : public FrontendInterface { class DataCache : public FrontendInterface {
public: public:
explicit DataCache() { finished_ = false; } explicit DataCache() { finished_ = false; }

@ -0,0 +1,108 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "frontend/audio/fbank.h"
#include "kaldi/base/kaldi-math.h"
#include "kaldi/feat/feature-common.h"
#include "kaldi/feat/feature-functions.h"
#include "kaldi/matrix/matrix-functions.h"
namespace ppspeech {
using kaldi::int32;
using kaldi::BaseFloat;
using kaldi::Vector;
using kaldi::SubVector;
using kaldi::VectorBase;
using kaldi::Matrix;
using std::vector;
Fbank::Fbank(const FbankOptions& opts,
std::unique_ptr<FrontendInterface> base_extractor)
: opts_(opts),
computer_(opts.fbank_opts),
window_function_(computer_.GetFrameOptions()) {
base_extractor_ = std::move(base_extractor);
chunk_sample_size_ =
static_cast<int32>(opts.streaming_chunk * opts.frame_opts.samp_freq);
}
void Fbank::Accept(const VectorBase<BaseFloat>& inputs) {
base_extractor_->Accept(inputs);
}
bool Fbank::Read(Vector<BaseFloat>* feats) {
Vector<BaseFloat> wav(chunk_sample_size_);
bool flag = base_extractor_->Read(&wav);
if (flag == false || wav.Dim() == 0) return false;
// append remaned waves
int32 wav_len = wav.Dim();
int32 left_len = remained_wav_.Dim();
Vector<BaseFloat> waves(left_len + wav_len);
waves.Range(0, left_len).CopyFromVec(remained_wav_);
waves.Range(left_len, wav_len).CopyFromVec(wav);
// compute speech feature
Compute(waves, feats);
// cache remaned waves
kaldi::FrameExtractionOptions frame_opts = computer_.GetFrameOptions();
int32 num_frames = kaldi::NumFrames(waves.Dim(), frame_opts);
int32 frame_shift = frame_opts.WindowShift();
int32 left_samples = waves.Dim() - frame_shift * num_frames;
remained_wav_.Resize(left_samples);
remained_wav_.CopyFromVec(
waves.Range(frame_shift * num_frames, left_samples));
return true;
}
// Compute spectrogram feat
bool Fbank::Compute(const Vector<BaseFloat>& waves, Vector<BaseFloat>* feats) {
const FrameExtractionOptions& frame_opts = computer_.GetFrameOptions();
int32 num_samples = waves.Dim();
int32 frame_length = frame_opts.WindowSize();
int32 sample_rate = frame_opts.samp_freq;
if (num_samples < frame_length) {
return true;
}
int32 num_frames = kaldi::NumFrames(num_samples, frame_opts);
feats->Rsize(num_frames * Dim());
Vector<BaseFloat> window;
bool need_raw_log_energy = computer_.NeedRawLogEnergy();
for (int32 frame = 0; frame < num_frames; frame++) {
BaseFloat raw_log_energy = 0.0;
kaldi::ExtractWindow(0,
waves,
frame,
frame_opts,
window_function_,
&window,
need_raw_log_energy ? &raw_log_energy : NULL);
Vector<BaseFloat> this_feature(computer_.Dim(), kUndefined);
// note: this online feature-extraction code does not support VTLN.
BaseFloat vtln_warp = 1.0;
computer_.Compute(raw_log_energy, vtln_warp, &window, &this_feature);
SubVector<BaseFloat> output_row(feats->Data() + frame * Dim(), Dim());
output_row.CopyFromVec(this_feature);
}
return true;
}
} // namespace ppspeech

@ -12,29 +12,30 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
// wrap the fbank feat of kaldi, todo (SmileGoat) #pragma once
#include "kaldi/feat/feature-fbank.h"
#include "kaldi/feat/feature-mfcc.h" #include "kaldi/feat/feature-mfcc.h"
#incldue "kaldi/matrix/kaldi-vector.h" #include "kaldi/matrix/kaldi-vector.h"
namespace ppspeech { namespace ppspeech {
struct FbankOptions { struct FbankOptions {
kaldi::FrameExtractionOptions frame_opts; kaldi::FbankOptions fbank_opts;
kaldi::BaseFloat streaming_chunk; // second kaldi::BaseFloat streaming_chunk; // second
LinearSpectrogramOptions() : streaming_chunk(0.1), frame_opts() {} FbankOptions() : streaming_chunk(0.1), fbank_opts() {}
void Register(kaldi::OptionsItf* opts) { void Register(kaldi::OptionsItf* opts) {
opts->Register("streaming-chunk", opts->Register("streaming-chunk",
&streaming_chunk, &streaming_chunk,
"streaming chunk size, default: 0.1 sec"); "streaming chunk size, default: 0.1 sec");
frame_opts.Register(opts); fbank_opts.Register(opts);
} }
}; };
class Fbank : FrontendInterface { class Fbank : public FrontendInterface {
public: public:
explicit Fbank(const FbankOptions& opts, explicit Fbank(const FbankOptions& opts,
unique_ptr<FrontendInterface> base_extractor); unique_ptr<FrontendInterface> base_extractor);
@ -42,7 +43,7 @@ class Fbank : FrontendInterface {
virtual bool Read(kaldi::Vector<kaldi::BaseFloat>* feats); virtual bool Read(kaldi::Vector<kaldi::BaseFloat>* feats);
// the dim_ is the dim of single frame feature // the dim_ is the dim of single frame feature
virtual size_t Dim() const { return dim_; } virtual size_t Dim() const { return computer_.Dim(); }
virtual void SetFinished() { base_extractor_->SetFinished(); } virtual void SetFinished() { base_extractor_->SetFinished(); }
@ -57,13 +58,17 @@ class Fbank : FrontendInterface {
bool Compute(const kaldi::Vector<kaldi::BaseFloat>& waves, bool Compute(const kaldi::Vector<kaldi::BaseFloat>& waves,
kaldi::Vector<kaldi::BaseFloat>* feats); kaldi::Vector<kaldi::BaseFloat>* feats);
// kaldi::FeatureWindowFunction feature_window_funtion_;
// kaldi::BaseFloat hanning_window_energy_;
size_t dim_;
FbankOptions opts_; FbankOptions opts_;
std::unique_ptr<FrontendInterface> base_extractor_; std::unique_ptr<FrontendInterface> base_extractor_;
FeatureWindowFunction window_function_;
kaldi::FbankComputer computer_;
// features_ is the Mfcc or Plp or Fbank features that we have already
// computed.
kaldi::Vector<kaldi::BaseFloat> features_;
kaldi::Vector<kaldi::BaseFloat> remained_wav_; kaldi::Vector<kaldi::BaseFloat> remained_wav_;
int chunk_sample_size_;
DISALLOW_COPY_AND_ASSIGN(Fbank); DISALLOW_COPY_AND_ASSIGN(Fbank);
}; };

@ -0,0 +1,108 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "frontend/audio/mfcc.h"
#include "kaldi/base/kaldi-math.h"
#include "kaldi/feat/feature-common.h"
#include "kaldi/feat/feature-functions.h"
#include "kaldi/matrix/matrix-functions.h"
namespace ppspeech {
using kaldi::int32;
using kaldi::BaseFloat;
using kaldi::Vector;
using kaldi::SubVector;
using kaldi::VectorBase;
using kaldi::Matrix;
using std::vector;
Mfcc::Mfcc(const MfccOptions& opts,
std::unique_ptr<FrontendInterface> base_extractor)
: opts_(opts),
computer_(opts.mfcc_opts),
window_function_(computer_.GetFrameOptions()) {
base_extractor_ = std::move(base_extractor);
chunk_sample_size_ =
static_cast<int32>(opts.streaming_chunk * opts.frame_opts.samp_freq);
}
void Mfcc::Accept(const VectorBase<BaseFloat>& inputs) {
base_extractor_->Accept(inputs);
}
bool Mfcc::Read(Vector<BaseFloat>* feats) {
Vector<BaseFloat> wav(chunk_sample_size_);
bool flag = base_extractor_->Read(&wav);
if (flag == false || wav.Dim() == 0) return false;
// append remaned waves
int32 wav_len = wav.Dim();
int32 left_len = remained_wav_.Dim();
Vector<BaseFloat> waves(left_len + wav_len);
waves.Range(0, left_len).CopyFromVec(remained_wav_);
waves.Range(left_len, wav_len).CopyFromVec(wav);
// compute speech feature
Compute(waves, feats);
// cache remaned waves
kaldi::FrameExtractionOptions frame_opts = computer_.GetFrameOptions();
int32 num_frames = kaldi::NumFrames(waves.Dim(), frame_opts);
int32 frame_shift = frame_opts.WindowShift();
int32 left_samples = waves.Dim() - frame_shift * num_frames;
remained_wav_.Resize(left_samples);
remained_wav_.CopyFromVec(
waves.Range(frame_shift * num_frames, left_samples));
return true;
}
// Compute spectrogram feat
bool Mfcc::Compute(const Vector<BaseFloat>& waves, Vector<BaseFloat>* feats) {
const FrameExtractionOptions& frame_opts = computer_.GetFrameOptions();
int32 num_samples = waves.Dim();
int32 frame_length = frame_opts.WindowSize();
int32 sample_rate = frame_opts.samp_freq;
if (num_samples < frame_length) {
return true;
}
int32 num_frames = kaldi::NumFrames(num_samples, frame_opts);
feats->Rsize(num_frames * Dim());
Vector<BaseFloat> window;
bool need_raw_log_energy = computer_.NeedRawLogEnergy();
for (int32 frame = 0; frame < num_frames; frame++) {
BaseFloat raw_log_energy = 0.0;
kaldi::ExtractWindow(0,
waves,
frame,
frame_opts,
window_function_,
&window,
need_raw_log_energy ? &raw_log_energy : NULL);
Vector<BaseFloat> this_feature(computer_.Dim(), kUndefined);
// note: this online feature-extraction code does not support VTLN.
BaseFloat vtln_warp = 1.0;
computer_.Compute(raw_log_energy, vtln_warp, &window, &this_feature);
SubVector<BaseFloat> output_row(feats->Data() + frame * Dim(), Dim());
output_row.CopyFromVec(this_feature);
}
return true;
}
} // namespace ppspeech

@ -12,5 +12,65 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
// wrap the mfcc feat of kaldi, todo (SmileGoat) #pragma once
#include "kaldi/feat/feature-mfcc.h"
#include "kaldi/feat/feature-mfcc.h"
#include "kaldi/feat/feature-mfcc.h"
#include "kaldi/matrix/kaldi-vector.h"
namespace ppspeech {
struct MfccOptions {
kaldi::MfccOptions mfcc_opts;
kaldi::BaseFloat streaming_chunk; // second
MfccOptions() : streaming_chunk(0.1), mfcc_opts() {}
void Register(kaldi::OptionsItf* opts) {
opts->Register("streaming-chunk",
&streaming_chunk,
"streaming chunk size, default: 0.1 sec");
mfcc_opts.Register(opts);
}
};
class Mfcc : public FrontendInterface {
public:
explicit Mfcc(const MfccOptions& opts,
unique_ptr<FrontendInterface> base_extractor);
virtual void Accept(const kaldi::VectorBase<kaldi::BaseFloat>& inputs);
virtual bool Read(kaldi::Vector<kaldi::BaseFloat>* feats);
// the dim_ is the dim of single frame feature
virtual size_t Dim() const { return computer_.Dim(); }
virtual void SetFinished() { base_extractor_->SetFinished(); }
virtual bool IsFinished() const { return base_extractor_->IsFinished(); }
virtual void Reset() {
base_extractor_->Reset();
remained_wav_.Resize(0);
}
private:
bool Compute(const kaldi::Vector<kaldi::BaseFloat>& waves,
kaldi::Vector<kaldi::BaseFloat>* feats);
MfccOptions opts_;
std::unique_ptr<FrontendInterface> base_extractor_;
FeatureWindowFunction window_function_;
kaldi::MfccComputer computer_;
// features_ is the Mfcc or Plp or Fbank features that we have already
// computed.
kaldi::Vector<kaldi::BaseFloat> features_;
kaldi::Vector<kaldi::BaseFloat> remained_wav_;
DISALLOW_COPY_AND_ASSIGN(Fbank);
};
} // namespace ppspeech
Loading…
Cancel
Save