parent
f55fb384ee
commit
ab16d8ce3c
@ -0,0 +1,272 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
from paddle.fluid import framework
|
||||||
|
from paddle.fluid.framework import in_dygraph_mode, default_main_program
|
||||||
|
import numpy as np
|
||||||
|
from paddle.fluid.core import VarDesc
|
||||||
|
from paddle.fluid import unique_name
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
'MSRAInitializer'
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
class Initializer(object):
|
||||||
|
"""Base class for variable initializers
|
||||||
|
|
||||||
|
Defines the common interface of variable initializers.
|
||||||
|
They add operations to the init program that are used
|
||||||
|
to initialize variables. Users should not use this class
|
||||||
|
directly, but need to use one of its implementations.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __call__(self, param, block=None):
|
||||||
|
"""Add corresponding initialization operations to the network
|
||||||
|
"""
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
def _check_block(self, block):
|
||||||
|
if block is None:
|
||||||
|
block = default_main_program().global_block()
|
||||||
|
|
||||||
|
return block
|
||||||
|
|
||||||
|
def _compute_fans(self, var):
|
||||||
|
"""Compute the fan_in and the fan_out for layers
|
||||||
|
|
||||||
|
This method computes the fan_in and the fan_out
|
||||||
|
for neural network layers, if not specified. It is
|
||||||
|
not possible to perfectly estimate fan_in and fan_out.
|
||||||
|
This method will estimate it correctly for matrix multiply and
|
||||||
|
convolutions.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
var: variable for which fan_in and fan_out have to be computed
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple of two integers (fan_in, fan_out)
|
||||||
|
"""
|
||||||
|
shape = var.shape
|
||||||
|
if not shape or len(shape) == 0:
|
||||||
|
fan_in = fan_out = 1
|
||||||
|
elif len(shape) == 1:
|
||||||
|
fan_in = fan_out = shape[0]
|
||||||
|
elif len(shape) == 2:
|
||||||
|
# This is the case for simple matrix multiply
|
||||||
|
fan_in = shape[0]
|
||||||
|
fan_out = shape[1]
|
||||||
|
else:
|
||||||
|
# Assume this to be a convolutional kernel
|
||||||
|
# In PaddlePaddle, the shape of the kernel is like:
|
||||||
|
# [num_filters, num_filter_channels, ...] where the remaining
|
||||||
|
# dimensions are the filter_size
|
||||||
|
receptive_field_size = np.prod(shape[2:])
|
||||||
|
fan_in = shape[1] * receptive_field_size
|
||||||
|
fan_out = shape[0] * receptive_field_size
|
||||||
|
|
||||||
|
return (fan_in, fan_out)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class MSRAInitializer(Initializer):
|
||||||
|
r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
|
||||||
|
|
||||||
|
This class implements the weight initialization from the paper
|
||||||
|
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
|
||||||
|
ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
|
||||||
|
by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
|
||||||
|
robust initialization method that particularly considers the rectifier
|
||||||
|
nonlinearities. In case of Uniform distribution, the range is [-x, x], where
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
x = \sqrt{\\frac{6.0}{fan\_in}}
|
||||||
|
|
||||||
|
In case of Normal distribution, the mean is 0 and the standard deviation
|
||||||
|
is
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
\sqrt{\\frac{2.0}{fan\_in}}
|
||||||
|
|
||||||
|
Args:
|
||||||
|
uniform (bool): whether to use uniform or normal distribution
|
||||||
|
fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
|
||||||
|
inferred from the variable. default is None.
|
||||||
|
seed (int32): random seed
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It is recommended to set fan_in to None for most cases.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
paddle.enable_static()
|
||||||
|
x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
|
||||||
|
fc = fluid.layers.fc(input=x, size=10,
|
||||||
|
param_attr=fluid.initializer.MSRA(uniform=False))
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, uniform=True, fan_in=None, seed=0):
|
||||||
|
"""Constructor for MSRAInitializer
|
||||||
|
"""
|
||||||
|
assert uniform is not None
|
||||||
|
assert seed is not None
|
||||||
|
super(MSRAInitializer, self).__init__()
|
||||||
|
self._uniform = uniform
|
||||||
|
self._fan_in = fan_in
|
||||||
|
self._seed = seed
|
||||||
|
|
||||||
|
def __call__(self, var, block=None):
|
||||||
|
"""Initialize the input tensor with MSRA initialization.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
var(Tensor): Tensor that needs to be initialized.
|
||||||
|
block(Block, optional): The block in which initialization ops
|
||||||
|
should be added. Used in static graph only, default None.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The initialization op
|
||||||
|
"""
|
||||||
|
block = self._check_block(block)
|
||||||
|
|
||||||
|
assert isinstance(var, framework.Variable)
|
||||||
|
assert isinstance(block, framework.Block)
|
||||||
|
f_in, f_out = self._compute_fans(var)
|
||||||
|
|
||||||
|
# If fan_in is passed, use it
|
||||||
|
fan_in = f_in if self._fan_in is None else self._fan_in
|
||||||
|
|
||||||
|
if self._seed == 0:
|
||||||
|
self._seed = block.program.random_seed
|
||||||
|
|
||||||
|
# to be compatible of fp16 initalizers
|
||||||
|
if var.dtype == VarDesc.VarType.FP16 or (
|
||||||
|
var.dtype == VarDesc.VarType.BF16 and not self._uniform):
|
||||||
|
out_dtype = VarDesc.VarType.FP32
|
||||||
|
out_var = block.create_var(
|
||||||
|
name=unique_name.generate(".".join(
|
||||||
|
['masra_init', var.name, 'tmp'])),
|
||||||
|
shape=var.shape,
|
||||||
|
dtype=out_dtype,
|
||||||
|
type=VarDesc.VarType.LOD_TENSOR,
|
||||||
|
persistable=False)
|
||||||
|
else:
|
||||||
|
out_dtype = var.dtype
|
||||||
|
out_var = var
|
||||||
|
|
||||||
|
if self._uniform:
|
||||||
|
limit = np.sqrt(1.0 / float(fan_in))
|
||||||
|
op = block.append_op(
|
||||||
|
type="uniform_random",
|
||||||
|
inputs={},
|
||||||
|
outputs={"Out": out_var},
|
||||||
|
attrs={
|
||||||
|
"shape": out_var.shape,
|
||||||
|
"dtype": int(out_dtype),
|
||||||
|
"min": -limit,
|
||||||
|
"max": limit,
|
||||||
|
"seed": self._seed
|
||||||
|
},
|
||||||
|
stop_gradient=True)
|
||||||
|
|
||||||
|
else:
|
||||||
|
std = np.sqrt(2.0 / float(fan_in))
|
||||||
|
op = block.append_op(
|
||||||
|
type="gaussian_random",
|
||||||
|
outputs={"Out": out_var},
|
||||||
|
attrs={
|
||||||
|
"shape": out_var.shape,
|
||||||
|
"dtype": int(out_dtype),
|
||||||
|
"mean": 0.0,
|
||||||
|
"std": std,
|
||||||
|
"seed": self._seed
|
||||||
|
},
|
||||||
|
stop_gradient=True)
|
||||||
|
|
||||||
|
if var.dtype == VarDesc.VarType.FP16 or (
|
||||||
|
var.dtype == VarDesc.VarType.BF16 and not self._uniform):
|
||||||
|
block.append_op(
|
||||||
|
type="cast",
|
||||||
|
inputs={"X": out_var},
|
||||||
|
outputs={"Out": var},
|
||||||
|
attrs={"in_dtype": out_var.dtype,
|
||||||
|
"out_dtype": var.dtype})
|
||||||
|
|
||||||
|
if not framework.in_dygraph_mode():
|
||||||
|
var.op = op
|
||||||
|
return op
|
||||||
|
|
||||||
|
class KaimingUniform(MSRAInitializer):
|
||||||
|
r"""Implements the Kaiming Uniform initializer
|
||||||
|
|
||||||
|
This class implements the weight initialization from the paper
|
||||||
|
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
|
||||||
|
ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
|
||||||
|
by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
|
||||||
|
robust initialization method that particularly considers the rectifier
|
||||||
|
nonlinearities.
|
||||||
|
|
||||||
|
In case of Uniform distribution, the range is [-x, x], where
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
x = \sqrt{\frac{6.0}{fan\_in}}
|
||||||
|
|
||||||
|
Args:
|
||||||
|
fan_in (float32|None): fan_in for Kaiming uniform Initializer. If None, it is\
|
||||||
|
inferred from the variable. default is None.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It is recommended to set fan_in to None for most cases.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import paddle.nn as nn
|
||||||
|
|
||||||
|
linear = nn.Linear(2,
|
||||||
|
4,
|
||||||
|
weight_attr=nn.initializer.KaimingUniform())
|
||||||
|
data = paddle.rand([30, 10, 2], dtype='float32')
|
||||||
|
res = linear(data)
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, fan_in=None):
|
||||||
|
super(KaimingUniform, self).__init__(
|
||||||
|
uniform=True, fan_in=fan_in, seed=0)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# We short the class name, since users will use the initializer with the package
|
||||||
|
# name. The sample code:
|
||||||
|
#
|
||||||
|
# import paddle.fluid as fluid
|
||||||
|
#
|
||||||
|
# hidden = fluid.layers.fc(...,
|
||||||
|
# param_attr=ParamAttr(fluid.initializer.Xavier()))
|
||||||
|
#
|
||||||
|
# It is no need to add an `Initializer` as the class suffix
|
||||||
|
MSRA = MSRAInitializer
|
@ -0,0 +1,44 @@
|
|||||||
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# Modified from espnet(https://github.com/espnet/espnet)
|
||||||
|
from paddle import nn
|
||||||
|
from typeguard import check_argument_types
|
||||||
|
|
||||||
|
def initialize(model: nn.Layer, init: str):
|
||||||
|
"""Initialize weights of a neural network module.
|
||||||
|
|
||||||
|
Parameters are initialized using the given method or distribution.
|
||||||
|
|
||||||
|
Custom initialization routines can be implemented into submodules
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (nn.Layer): Target.
|
||||||
|
init (str): Method of initialization.
|
||||||
|
"""
|
||||||
|
assert check_argument_types()
|
||||||
|
|
||||||
|
if init == "xavier_uniform":
|
||||||
|
nn.initializer.set_global_initializer(nn.initializer.XavierUniform(),
|
||||||
|
nn.initializer.Constant())
|
||||||
|
elif init == "xavier_normal":
|
||||||
|
nn.initializer.set_global_initializer(nn.initializer.XavierNormal(),
|
||||||
|
nn.initializer.Constant())
|
||||||
|
elif init == "kaiming_uniform":
|
||||||
|
nn.initializer.set_global_initializer(nn.initializer.KaimingUniform(),
|
||||||
|
nn.initializer.KaimingUniform())
|
||||||
|
elif init == "kaiming_normal":
|
||||||
|
nn.initializer.set_global_initializer(nn.initializer.KaimingNormal(),
|
||||||
|
nn.initializer.Constant())
|
||||||
|
else:
|
||||||
|
raise ValueError("Unknown initialization: " + init)
|
Loading…
Reference in new issue