parent
bac9e0b153
commit
a72d37a838
@ -0,0 +1,127 @@
|
|||||||
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import argparse
|
||||||
|
import glob
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import paddle
|
||||||
|
|
||||||
|
|
||||||
|
def define_argparse():
|
||||||
|
parser = argparse.ArgumentParser(description='average model')
|
||||||
|
parser.add_argument('--dst_model', required=True, help='averaged model')
|
||||||
|
parser.add_argument(
|
||||||
|
'--ckpt_dir', required=True, help='ckpt model dir for average')
|
||||||
|
parser.add_argument(
|
||||||
|
'--val_best', action="store_true", help='averaged model')
|
||||||
|
parser.add_argument(
|
||||||
|
'--num', default=5, type=int, help='nums for averaged model')
|
||||||
|
parser.add_argument(
|
||||||
|
'--min_epoch',
|
||||||
|
default=0,
|
||||||
|
type=int,
|
||||||
|
help='min epoch used for averaging model')
|
||||||
|
parser.add_argument(
|
||||||
|
'--max_epoch',
|
||||||
|
default=65536, # Big enough
|
||||||
|
type=int,
|
||||||
|
help='max epoch used for averaging model')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def average_checkpoints(dst_model="",
|
||||||
|
ckpt_dir="",
|
||||||
|
val_best=True,
|
||||||
|
num=5,
|
||||||
|
min_epoch=0,
|
||||||
|
max_epoch=65536):
|
||||||
|
paddle.set_device('cpu')
|
||||||
|
|
||||||
|
val_scores = []
|
||||||
|
beat_val_scores = None
|
||||||
|
selected_epochs = None
|
||||||
|
|
||||||
|
jsons = glob.glob(f'{args.ckpt_dir}/[!train]*.json')
|
||||||
|
jsons = sorted(jsons, key=os.path.getmtime, reverse=True)
|
||||||
|
for y in jsons:
|
||||||
|
with open(y, 'r') as f:
|
||||||
|
dic_json = json.load(f)
|
||||||
|
loss = dic_json['val_loss']
|
||||||
|
epoch = dic_json['epoch']
|
||||||
|
if epoch >= args.min_epoch and epoch <= args.max_epoch:
|
||||||
|
val_scores.append((epoch, loss))
|
||||||
|
val_scores = np.array(val_scores)
|
||||||
|
|
||||||
|
if args.val_best:
|
||||||
|
sort_idx = np.argsort(val_scores[:, 1])
|
||||||
|
sorted_val_scores = val_scores[sort_idx]
|
||||||
|
else:
|
||||||
|
sorted_val_scores = val_scores
|
||||||
|
|
||||||
|
beat_val_scores = sorted_val_scores[:args.num, 1]
|
||||||
|
selected_epochs = sorted_val_scores[:args.num, 0].astype(np.int64)
|
||||||
|
avg_val_score = np.mean(beat_val_scores)
|
||||||
|
print("selected val scores = " + str(beat_val_scores))
|
||||||
|
print("selected epochs = " + str(selected_epochs))
|
||||||
|
print("averaged val score = " + str(avg_val_score))
|
||||||
|
|
||||||
|
path_list = [
|
||||||
|
args.ckpt_dir + '/{}.pdparams'.format(int(epoch))
|
||||||
|
for epoch in sorted_val_scores[:args.num, 0]
|
||||||
|
]
|
||||||
|
print(path_list)
|
||||||
|
|
||||||
|
avg = None
|
||||||
|
num = args.num
|
||||||
|
assert num == len(path_list)
|
||||||
|
for path in path_list:
|
||||||
|
print(f'Processing {path}')
|
||||||
|
states = paddle.load(path)
|
||||||
|
if avg is None:
|
||||||
|
avg = states
|
||||||
|
else:
|
||||||
|
for k in avg.keys():
|
||||||
|
avg[k] += states[k]
|
||||||
|
# average
|
||||||
|
for k in avg.keys():
|
||||||
|
if avg[k] is not None:
|
||||||
|
avg[k] /= num
|
||||||
|
|
||||||
|
paddle.save(avg, args.dst_model)
|
||||||
|
print(f'Saving to {args.dst_model}')
|
||||||
|
|
||||||
|
meta_path = os.path.splitext(args.dst_model)[0] + '.avg.json'
|
||||||
|
with open(meta_path, 'w') as f:
|
||||||
|
data = json.dumps({
|
||||||
|
"mode": 'val_best' if args.val_best else 'latest',
|
||||||
|
"avg_ckpt": args.dst_model,
|
||||||
|
"val_loss_mean": avg_val_score,
|
||||||
|
"ckpts": path_list,
|
||||||
|
"epochs": selected_epochs.tolist(),
|
||||||
|
"val_losses": beat_val_scores.tolist(),
|
||||||
|
})
|
||||||
|
f.write(data + "\n")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = define_argparse()
|
||||||
|
average_checkpoints(args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
@ -0,0 +1,127 @@
|
|||||||
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
format ref/hyp file for `utt text` format to compute CER/WER/MER
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import jsonlines
|
||||||
|
|
||||||
|
|
||||||
|
def trans_hyp(origin_hyp, trans_hyp=None, trans_hyp_sclite=None):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
origin_hyp: The input json file which contains the model output
|
||||||
|
trans_hyp: The output file for caculate CER/WER
|
||||||
|
trans_hyp_sclite: The output file for caculate CER/WER using sclite
|
||||||
|
"""
|
||||||
|
input_dict = {}
|
||||||
|
|
||||||
|
with open(origin_hyp, "r+", encoding="utf8") as f:
|
||||||
|
for item in jsonlines.Reader(f):
|
||||||
|
input_dict[item["utt"]] = item["hyps"][0]
|
||||||
|
if trans_hyp is not None:
|
||||||
|
with open(trans_hyp, "w+", encoding="utf8") as f:
|
||||||
|
for key in input_dict.keys():
|
||||||
|
f.write(key + " " + input_dict[key] + "\n")
|
||||||
|
if trans_hyp_sclite is not None:
|
||||||
|
with open(trans_hyp_sclite, "w+") as f:
|
||||||
|
for key in input_dict.keys():
|
||||||
|
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
|
||||||
|
f.write(line)
|
||||||
|
|
||||||
|
|
||||||
|
def trans_ref(origin_ref, trans_ref=None, trans_ref_sclite=None):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
origin_hyp: The input json file which contains the model output
|
||||||
|
trans_hyp: The output file for caculate CER/WER
|
||||||
|
trans_hyp_sclite: The output file for caculate CER/WER using sclite
|
||||||
|
"""
|
||||||
|
input_dict = {}
|
||||||
|
|
||||||
|
with open(origin_ref, "r", encoding="utf8") as f:
|
||||||
|
for item in jsonlines.Reader(f):
|
||||||
|
input_dict[item["utt"]] = item["text"]
|
||||||
|
if trans_ref is not None:
|
||||||
|
with open(trans_ref, "w", encoding="utf8") as f:
|
||||||
|
for key in input_dict.keys():
|
||||||
|
f.write(key + " " + input_dict[key] + "\n")
|
||||||
|
|
||||||
|
if trans_ref_sclite is not None:
|
||||||
|
with open(trans_ref_sclite, "w") as f:
|
||||||
|
for key in input_dict.keys():
|
||||||
|
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
|
||||||
|
f.write(line)
|
||||||
|
|
||||||
|
|
||||||
|
def define_argparse():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
prog='format ref/hyp file for compute CER/WER', add_help=True)
|
||||||
|
parser.add_argument(
|
||||||
|
'--origin_hyp', type=str, default=None, help='origin hyp file')
|
||||||
|
parser.add_argument(
|
||||||
|
'--trans_hyp',
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help='hyp file for caculating CER/WER')
|
||||||
|
parser.add_argument(
|
||||||
|
'--trans_hyp_sclite',
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help='hyp file for caculating CER/WER by sclite')
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
'--origin_ref', type=str, default=None, help='origin ref file')
|
||||||
|
parser.add_argument(
|
||||||
|
'--trans_ref',
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help='ref file for caculating CER/WER')
|
||||||
|
parser.add_argument(
|
||||||
|
'--trans_ref_sclite',
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help='ref file for caculating CER/WER by sclite')
|
||||||
|
parser_args = parser.parse_args()
|
||||||
|
return parser_args
|
||||||
|
|
||||||
|
|
||||||
|
def format_result(origin_hyp=None,
|
||||||
|
trans_hyp=None,
|
||||||
|
trans_hyp_sclite=None,
|
||||||
|
origin_ref=None,
|
||||||
|
trans_ref=None,
|
||||||
|
trans_ref_sclite=None):
|
||||||
|
|
||||||
|
if origin_hyp is not None:
|
||||||
|
trans_hyp(
|
||||||
|
origin_hyp=origin_hyp,
|
||||||
|
trans_hyp=trans_hyp,
|
||||||
|
trans_hyp_sclite=trans_hyp_sclite, )
|
||||||
|
|
||||||
|
if origin_ref is not None:
|
||||||
|
trans_ref(
|
||||||
|
origin_ref=origin_ref,
|
||||||
|
trans_ref=trans_ref,
|
||||||
|
trans_ref_sclite=trans_ref_sclite, )
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = define_argparse()
|
||||||
|
format_result(**vars(args))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Reference in new issue