avg model, compute wer, format rsl into paddlespeech.dataset

pull/3189/head
Hui Zhang 2 years ago
parent bac9e0b153
commit a72d37a838

@ -27,5 +27,3 @@ export KALDI_ROOT=${MAIN_ROOT}/tools/kaldi
export PATH=$PWD/utils/:$KALDI_ROOT/tools/openfst/bin:$PWD:$PATH export PATH=$PWD/utils/:$KALDI_ROOT/tools/openfst/bin:$PWD:$PATH
[ ! -f $KALDI_ROOT/tools/config/common_path.sh ] && echo >&2 "The standard file $KALDI_ROOT/tools/config/common_path.sh is not present, can not using Kaldi!" [ ! -f $KALDI_ROOT/tools/config/common_path.sh ] && echo >&2 "The standard file $KALDI_ROOT/tools/config/common_path.sh is not present, can not using Kaldi!"
[ -f $KALDI_ROOT/tools/config/common_path.sh ] && . $KALDI_ROOT/tools/config/common_path.sh [ -f $KALDI_ROOT/tools/config/common_path.sh ] && . $KALDI_ROOT/tools/config/common_path.sh
unset GREP_OPTIONS

@ -12,6 +12,9 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# s2t utils binaries. # s2t utils binaries.
from .avg_model import main as avg_ckpts_main
from .build_vocab import main as build_vocab_main from .build_vocab import main as build_vocab_main
from .compute_mean_std import main as compute_mean_std_main from .compute_mean_std import main as compute_mean_std_main
from .compute_wer import main as compute_wer_main
from .format_data import main as format_data_main from .format_data import main as format_data_main
from .format_rsl import main as format_rsl_main

@ -0,0 +1,127 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import glob
import json
import os
import numpy as np
import paddle
def define_argparse():
parser = argparse.ArgumentParser(description='average model')
parser.add_argument('--dst_model', required=True, help='averaged model')
parser.add_argument(
'--ckpt_dir', required=True, help='ckpt model dir for average')
parser.add_argument(
'--val_best', action="store_true", help='averaged model')
parser.add_argument(
'--num', default=5, type=int, help='nums for averaged model')
parser.add_argument(
'--min_epoch',
default=0,
type=int,
help='min epoch used for averaging model')
parser.add_argument(
'--max_epoch',
default=65536, # Big enough
type=int,
help='max epoch used for averaging model')
args = parser.parse_args()
return args
def average_checkpoints(dst_model="",
ckpt_dir="",
val_best=True,
num=5,
min_epoch=0,
max_epoch=65536):
paddle.set_device('cpu')
val_scores = []
beat_val_scores = None
selected_epochs = None
jsons = glob.glob(f'{args.ckpt_dir}/[!train]*.json')
jsons = sorted(jsons, key=os.path.getmtime, reverse=True)
for y in jsons:
with open(y, 'r') as f:
dic_json = json.load(f)
loss = dic_json['val_loss']
epoch = dic_json['epoch']
if epoch >= args.min_epoch and epoch <= args.max_epoch:
val_scores.append((epoch, loss))
val_scores = np.array(val_scores)
if args.val_best:
sort_idx = np.argsort(val_scores[:, 1])
sorted_val_scores = val_scores[sort_idx]
else:
sorted_val_scores = val_scores
beat_val_scores = sorted_val_scores[:args.num, 1]
selected_epochs = sorted_val_scores[:args.num, 0].astype(np.int64)
avg_val_score = np.mean(beat_val_scores)
print("selected val scores = " + str(beat_val_scores))
print("selected epochs = " + str(selected_epochs))
print("averaged val score = " + str(avg_val_score))
path_list = [
args.ckpt_dir + '/{}.pdparams'.format(int(epoch))
for epoch in sorted_val_scores[:args.num, 0]
]
print(path_list)
avg = None
num = args.num
assert num == len(path_list)
for path in path_list:
print(f'Processing {path}')
states = paddle.load(path)
if avg is None:
avg = states
else:
for k in avg.keys():
avg[k] += states[k]
# average
for k in avg.keys():
if avg[k] is not None:
avg[k] /= num
paddle.save(avg, args.dst_model)
print(f'Saving to {args.dst_model}')
meta_path = os.path.splitext(args.dst_model)[0] + '.avg.json'
with open(meta_path, 'w') as f:
data = json.dumps({
"mode": 'val_best' if args.val_best else 'latest',
"avg_ckpt": args.dst_model,
"val_loss_mean": avg_val_score,
"ckpts": path_list,
"epochs": selected_epochs.tolist(),
"val_losses": beat_val_scores.tolist(),
})
f.write(data + "\n")
def main():
args = define_argparse()
average_checkpoints(args)
if __name__ == '__main__':
main()

@ -0,0 +1,558 @@
# Copyright 2021 Mobvoi Inc. All Rights Reserved.
# flake8: noqa
import codecs
import re
import sys
import unicodedata
remove_tag = True
spacelist = [' ', '\t', '\r', '\n']
puncts = [
'!', ',', '?', '', '', '', '', '', '', '', '', '', '', '', '',
'', ''
]
def characterize(string):
res = []
i = 0
while i < len(string):
char = string[i]
if char in puncts:
i += 1
continue
cat1 = unicodedata.category(char)
#https://unicodebook.readthedocs.io/unicode.html#unicode-categories
if cat1 == 'Zs' or cat1 == 'Cn' or char in spacelist: # space or not assigned
i += 1
continue
if cat1 == 'Lo': # letter-other
res.append(char)
i += 1
else:
# some input looks like: <unk><noise>, we want to separate it to two words.
sep = ' '
if char == '<': sep = '>'
j = i + 1
while j < len(string):
c = string[j]
if ord(c) >= 128 or (c in spacelist) or (c == sep):
break
j += 1
if j < len(string) and string[j] == '>':
j += 1
res.append(string[i:j])
i = j
return res
def stripoff_tags(x):
if not x: return ''
chars = []
i = 0
T = len(x)
while i < T:
if x[i] == '<':
while i < T and x[i] != '>':
i += 1
i += 1
else:
chars.append(x[i])
i += 1
return ''.join(chars)
def normalize(sentence, ignore_words, cs, split=None):
""" sentence, ignore_words are both in unicode
"""
new_sentence = []
for token in sentence:
x = token
if not cs:
x = x.upper()
if x in ignore_words:
continue
if remove_tag:
x = stripoff_tags(x)
if not x:
continue
if split and x in split:
new_sentence += split[x]
else:
new_sentence.append(x)
return new_sentence
class Calculator:
def __init__(self):
self.data = {}
self.space = []
self.cost = {}
self.cost['cor'] = 0
self.cost['sub'] = 1
self.cost['del'] = 1
self.cost['ins'] = 1
def calculate(self, lab, rec):
# Initialization
lab.insert(0, '')
rec.insert(0, '')
while len(self.space) < len(lab):
self.space.append([])
for row in self.space:
for element in row:
element['dist'] = 0
element['error'] = 'non'
while len(row) < len(rec):
row.append({'dist': 0, 'error': 'non'})
for i in range(len(lab)):
self.space[i][0]['dist'] = i
self.space[i][0]['error'] = 'del'
for j in range(len(rec)):
self.space[0][j]['dist'] = j
self.space[0][j]['error'] = 'ins'
self.space[0][0]['error'] = 'non'
for token in lab:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
for token in rec:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
# Computing edit distance
for i, lab_token in enumerate(lab):
for j, rec_token in enumerate(rec):
if i == 0 or j == 0:
continue
min_dist = sys.maxsize
min_error = 'none'
dist = self.space[i - 1][j]['dist'] + self.cost['del']
error = 'del'
if dist < min_dist:
min_dist = dist
min_error = error
dist = self.space[i][j - 1]['dist'] + self.cost['ins']
error = 'ins'
if dist < min_dist:
min_dist = dist
min_error = error
if lab_token == rec_token:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['cor']
error = 'cor'
else:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['sub']
error = 'sub'
if dist < min_dist:
min_dist = dist
min_error = error
self.space[i][j]['dist'] = min_dist
self.space[i][j]['error'] = min_error
# Tracing back
result = {
'lab': [],
'rec': [],
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
i = len(lab) - 1
j = len(rec) - 1
while True:
if self.space[i][j]['error'] == 'cor': # correct
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['cor'] = self.data[lab[i]]['cor'] + 1
result['all'] = result['all'] + 1
result['cor'] = result['cor'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'sub': # substitution
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['sub'] = self.data[lab[i]]['sub'] + 1
result['all'] = result['all'] + 1
result['sub'] = result['sub'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'del': # deletion
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['del'] = self.data[lab[i]]['del'] + 1
result['all'] = result['all'] + 1
result['del'] = result['del'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, "")
i = i - 1
elif self.space[i][j]['error'] == 'ins': # insertion
if len(rec[j]) > 0:
self.data[rec[j]]['ins'] = self.data[rec[j]]['ins'] + 1
result['ins'] = result['ins'] + 1
result['lab'].insert(0, "")
result['rec'].insert(0, rec[j])
j = j - 1
elif self.space[i][j]['error'] == 'non': # starting point
break
else: # shouldn't reach here
print(
'this should not happen , i = {i} , j = {j} , error = {error}'.
format(i=i, j=j, error=self.space[i][j]['error']))
return result
def overall(self):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def cluster(self, data):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in data:
if token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def keys(self):
return list(self.data.keys())
def width(string):
return sum(1 + (unicodedata.east_asian_width(c) in "AFW") for c in string)
def default_cluster(word):
unicode_names = [unicodedata.name(char) for char in word]
for i in reversed(range(len(unicode_names))):
if unicode_names[i].startswith('DIGIT'): # 1
unicode_names[i] = 'Number' # 'DIGIT'
elif (unicode_names[i].startswith('CJK UNIFIED IDEOGRAPH') or
unicode_names[i].startswith('CJK COMPATIBILITY IDEOGRAPH')):
# 明 / 郎
unicode_names[i] = 'Mandarin' # 'CJK IDEOGRAPH'
elif (unicode_names[i].startswith('LATIN CAPITAL LETTER') or
unicode_names[i].startswith('LATIN SMALL LETTER')):
# A / a
unicode_names[i] = 'English' # 'LATIN LETTER'
elif unicode_names[i].startswith('HIRAGANA LETTER'): # は こ め
unicode_names[i] = 'Japanese' # 'GANA LETTER'
elif (unicode_names[i].startswith('AMPERSAND') or
unicode_names[i].startswith('APOSTROPHE') or
unicode_names[i].startswith('COMMERCIAL AT') or
unicode_names[i].startswith('DEGREE CELSIUS') or
unicode_names[i].startswith('EQUALS SIGN') or
unicode_names[i].startswith('FULL STOP') or
unicode_names[i].startswith('HYPHEN-MINUS') or
unicode_names[i].startswith('LOW LINE') or
unicode_names[i].startswith('NUMBER SIGN') or
unicode_names[i].startswith('PLUS SIGN') or
unicode_names[i].startswith('SEMICOLON')):
# & / ' / @ / ℃ / = / . / - / _ / # / + / ;
del unicode_names[i]
else:
return 'Other'
if len(unicode_names) == 0:
return 'Other'
if len(unicode_names) == 1:
return unicode_names[0]
for i in range(len(unicode_names) - 1):
if unicode_names[i] != unicode_names[i + 1]:
return 'Other'
return unicode_names[0]
def usage():
print(
"compute-wer.py : compute word error rate (WER) and align recognition results and references."
)
print(
" usage : python compute-wer.py [--cs={0,1}] [--cluster=foo] [--ig=ignore_file] [--char={0,1}] [--v={0,1}] [--padding-symbol={space,underline}] test.ref test.hyp > test.wer"
)
def main():
# python utils/compute-wer.py --char=1 --v=1 ref hyp > rsl.error
if len(sys.argv) == 1:
usage()
sys.exit(0)
calculator = Calculator()
cluster_file = ''
ignore_words = set()
tochar = False
verbose = 1
padding_symbol = ' '
case_sensitive = False
max_words_per_line = sys.maxsize
split = None
while len(sys.argv) > 3:
a = '--maxw='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):]
del sys.argv[1]
max_words_per_line = int(b)
continue
a = '--rt='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
remove_tag = (b == 'true') or (b != '0')
continue
a = '--cs='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
case_sensitive = (b == 'true') or (b != '0')
continue
a = '--cluster='
if sys.argv[1].startswith(a):
cluster_file = sys.argv[1][len(a):]
del sys.argv[1]
continue
a = '--splitfile='
if sys.argv[1].startswith(a):
split_file = sys.argv[1][len(a):]
del sys.argv[1]
split = dict()
with codecs.open(split_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
words = line.strip().split()
if len(words) >= 2:
split[words[0]] = words[1:]
continue
a = '--ig='
if sys.argv[1].startswith(a):
ignore_file = sys.argv[1][len(a):]
del sys.argv[1]
with codecs.open(ignore_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
line = line.strip()
if len(line) > 0:
ignore_words.add(line)
continue
a = '--char='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
tochar = (b == 'true') or (b != '0')
continue
a = '--v='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
verbose = 0
try:
verbose = int(b)
except:
if b == 'true' or b != '0':
verbose = 1
continue
a = '--padding-symbol='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
if b == 'space':
padding_symbol = ' '
elif b == 'underline':
padding_symbol = '_'
continue
if True or sys.argv[1].startswith('-'):
#ignore invalid switch
del sys.argv[1]
continue
if not case_sensitive:
ig = set([w.upper() for w in ignore_words])
ignore_words = ig
default_clusters = {}
default_words = {}
ref_file = sys.argv[1]
hyp_file = sys.argv[2]
rec_set = {}
if split and not case_sensitive:
newsplit = dict()
for w in split:
words = split[w]
for i in range(len(words)):
words[i] = words[i].upper()
newsplit[w.upper()] = words
split = newsplit
with codecs.open(hyp_file, 'r', 'utf-8') as fh:
for line in fh:
if tochar:
array = characterize(line)
else:
array = line.strip().split()
if len(array) == 0: continue
fid = array[0]
rec_set[fid] = normalize(array[1:], ignore_words, case_sensitive,
split)
# compute error rate on the interaction of reference file and hyp file
for line in open(ref_file, 'r', encoding='utf-8'):
if tochar:
array = characterize(line)
else:
array = line.rstrip('\n').split()
if len(array) == 0: continue
fid = array[0]
if fid not in rec_set:
continue
lab = normalize(array[1:], ignore_words, case_sensitive, split)
rec = rec_set[fid]
if verbose:
print('\nutt: %s' % fid)
for word in rec + lab:
if word not in default_words:
default_cluster_name = default_cluster(word)
if default_cluster_name not in default_clusters:
default_clusters[default_cluster_name] = {}
if word not in default_clusters[default_cluster_name]:
default_clusters[default_cluster_name][word] = 1
default_words[word] = default_cluster_name
result = calculator.calculate(lab, rec)
if verbose:
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('WER: %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
space = {}
space['lab'] = []
space['rec'] = []
for idx in range(len(result['lab'])):
len_lab = width(result['lab'][idx])
len_rec = width(result['rec'][idx])
length = max(len_lab, len_rec)
space['lab'].append(length - len_lab)
space['rec'].append(length - len_rec)
upper_lab = len(result['lab'])
upper_rec = len(result['rec'])
lab1, rec1 = 0, 0
while lab1 < upper_lab or rec1 < upper_rec:
if verbose > 1:
print('lab(%s):' % fid.encode('utf-8'), end=' ')
else:
print('lab:', end=' ')
lab2 = min(upper_lab, lab1 + max_words_per_line)
for idx in range(lab1, lab2):
token = result['lab'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['lab'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print()
if verbose > 1:
print('rec(%s):' % fid.encode('utf-8'), end=' ')
else:
print('rec:', end=' ')
rec2 = min(upper_rec, rec1 + max_words_per_line)
for idx in range(rec1, rec2):
token = result['rec'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['rec'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print('\n', end='\n')
lab1 = lab2
rec1 = rec2
if verbose:
print(
'==========================================================================='
)
print()
result = calculator.overall()
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('Overall -> %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if not verbose:
print()
if verbose:
for cluster_id in default_clusters:
result = calculator.cluster(
[k for k in default_clusters[cluster_id]])
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if len(cluster_file) > 0: # compute separated WERs for word clusters
cluster_id = ''
cluster = []
for line in open(cluster_file, 'r', encoding='utf-8'):
for token in line.decode('utf-8').rstrip('\n').split():
# end of cluster reached, like </Keyword>
if token[0:2] == '</' and token[len(token)-1] == '>' and \
token.lstrip('</').rstrip('>') == cluster_id :
result = calculator.cluster(cluster)
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'],
result['del'], result['ins']))
cluster_id = ''
cluster = []
# begin of cluster reached, like <Keyword>
elif token[0] == '<' and token[len(token)-1] == '>' and \
cluster_id == '' :
cluster_id = token.lstrip('<').rstrip('>')
cluster = []
# general terms, like WEATHER / CAR / ...
else:
cluster.append(token)
print()
print(
'==========================================================================='
)
if __name__ == '__main__':
main()

@ -1,5 +1,4 @@
#!/usr/bin/env python3 # Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.

@ -0,0 +1,127 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
format ref/hyp file for `utt text` format to compute CER/WER/MER
"""
import argparse
import jsonlines
def trans_hyp(origin_hyp, trans_hyp=None, trans_hyp_sclite=None):
"""
Args:
origin_hyp: The input json file which contains the model output
trans_hyp: The output file for caculate CER/WER
trans_hyp_sclite: The output file for caculate CER/WER using sclite
"""
input_dict = {}
with open(origin_hyp, "r+", encoding="utf8") as f:
for item in jsonlines.Reader(f):
input_dict[item["utt"]] = item["hyps"][0]
if trans_hyp is not None:
with open(trans_hyp, "w+", encoding="utf8") as f:
for key in input_dict.keys():
f.write(key + " " + input_dict[key] + "\n")
if trans_hyp_sclite is not None:
with open(trans_hyp_sclite, "w+") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
def trans_ref(origin_ref, trans_ref=None, trans_ref_sclite=None):
"""
Args:
origin_hyp: The input json file which contains the model output
trans_hyp: The output file for caculate CER/WER
trans_hyp_sclite: The output file for caculate CER/WER using sclite
"""
input_dict = {}
with open(origin_ref, "r", encoding="utf8") as f:
for item in jsonlines.Reader(f):
input_dict[item["utt"]] = item["text"]
if trans_ref is not None:
with open(trans_ref, "w", encoding="utf8") as f:
for key in input_dict.keys():
f.write(key + " " + input_dict[key] + "\n")
if trans_ref_sclite is not None:
with open(trans_ref_sclite, "w") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
def define_argparse():
parser = argparse.ArgumentParser(
prog='format ref/hyp file for compute CER/WER', add_help=True)
parser.add_argument(
'--origin_hyp', type=str, default=None, help='origin hyp file')
parser.add_argument(
'--trans_hyp',
type=str,
default=None,
help='hyp file for caculating CER/WER')
parser.add_argument(
'--trans_hyp_sclite',
type=str,
default=None,
help='hyp file for caculating CER/WER by sclite')
parser.add_argument(
'--origin_ref', type=str, default=None, help='origin ref file')
parser.add_argument(
'--trans_ref',
type=str,
default=None,
help='ref file for caculating CER/WER')
parser.add_argument(
'--trans_ref_sclite',
type=str,
default=None,
help='ref file for caculating CER/WER by sclite')
parser_args = parser.parse_args()
return parser_args
def format_result(origin_hyp=None,
trans_hyp=None,
trans_hyp_sclite=None,
origin_ref=None,
trans_ref=None,
trans_ref_sclite=None):
if origin_hyp is not None:
trans_hyp(
origin_hyp=origin_hyp,
trans_hyp=trans_hyp,
trans_hyp_sclite=trans_hyp_sclite, )
if origin_ref is not None:
trans_ref(
origin_ref=origin_ref,
trans_ref=trans_ref,
trans_ref_sclite=trans_ref_sclite, )
def main():
args = define_argparse()
format_result(**vars(args))
if __name__ == "__main__":
main()

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Tester as Tester from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Tester as Tester from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2ExportTester as ExportTester from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2ExportTester as ExportTester
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -27,8 +27,8 @@ from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils import mp_tools from paddlespeech.s2t.utils import mp_tools
from paddlespeech.s2t.utils.checkpoint import Checkpoint from paddlespeech.s2t.utils.checkpoint import Checkpoint
from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.log import Log
from paddlespeech.s2t.utils.utility import print_arguments
from paddlespeech.s2t.utils.utility import UpdateConfig from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.utils.argparse import print_arguments
logger = Log(__name__).getlog() logger = Log(__name__).getlog()

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Trainer as Trainer from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Trainer as Trainer
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2.model import U2Tester as Tester from paddlespeech.s2t.exps.u2.model import U2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2.model import U2Tester as Tester from paddlespeech.s2t.exps.u2.model import U2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -18,7 +18,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2.model import U2Tester as Tester from paddlespeech.s2t.exps.u2.model import U2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -19,7 +19,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2.model import U2Trainer as Trainer from paddlespeech.s2t.exps.u2.model import U2Trainer as Trainer
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
# from paddlespeech.s2t.exps.u2.trainer import U2Trainer as Trainer # from paddlespeech.s2t.exps.u2.trainer import U2Trainer as Trainer

@ -18,7 +18,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.dynamic_import import dynamic_import from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
model_test_alias = { model_test_alias = {
"u2": "paddlespeech.s2t.exps.u2.model:U2Tester", "u2": "paddlespeech.s2t.exps.u2.model:U2Tester",

@ -19,7 +19,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.dynamic_import import dynamic_import from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
model_train_alias = { model_train_alias = {
"u2": "paddlespeech.s2t.exps.u2.model:U2Trainer", "u2": "paddlespeech.s2t.exps.u2.model:U2Trainer",

@ -16,7 +16,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2_st.model import U2STTester as Tester from paddlespeech.s2t.exps.u2_st.model import U2STTester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -18,7 +18,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2_st.model import U2STTester as Tester from paddlespeech.s2t.exps.u2_st.model import U2STTester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -19,7 +19,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2_st.model import U2STTrainer as Trainer from paddlespeech.s2t.exps.u2_st.model import U2STTrainer as Trainer
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -18,7 +18,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.wav2vec2.model import Wav2Vec2ASRTester as Tester from paddlespeech.s2t.exps.wav2vec2.model import Wav2Vec2ASRTester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -19,7 +19,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.wav2vec2.model import Wav2Vec2ASRTrainer as Trainer from paddlespeech.s2t.exps.wav2vec2.model import Wav2Vec2ASRTrainer as Trainer
from paddlespeech.s2t.training.cli import default_argument_parser from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments from paddlespeech.utils.argparse import print_arguments
def main_sp(config, args): def main_sp(config, args):

@ -12,105 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import argparse from paddlespeech.dataset.s2t import avg_ckpts_main
import glob
import json
import os
import numpy as np
import paddle
def main(args):
paddle.set_device('cpu')
val_scores = []
beat_val_scores = None
selected_epochs = None
jsons = glob.glob(f'{args.ckpt_dir}/[!train]*.json')
jsons = sorted(jsons, key=os.path.getmtime, reverse=True)
for y in jsons:
with open(y, 'r') as f:
dic_json = json.load(f)
loss = dic_json['val_loss']
epoch = dic_json['epoch']
if epoch >= args.min_epoch and epoch <= args.max_epoch:
val_scores.append((epoch, loss))
val_scores = np.array(val_scores)
if args.val_best:
sort_idx = np.argsort(val_scores[:, 1])
sorted_val_scores = val_scores[sort_idx]
else:
sorted_val_scores = val_scores
beat_val_scores = sorted_val_scores[:args.num, 1]
selected_epochs = sorted_val_scores[:args.num, 0].astype(np.int64)
avg_val_score = np.mean(beat_val_scores)
print("selected val scores = " + str(beat_val_scores))
print("selected epochs = " + str(selected_epochs))
print("averaged val score = " + str(avg_val_score))
path_list = [
args.ckpt_dir + '/{}.pdparams'.format(int(epoch))
for epoch in sorted_val_scores[:args.num, 0]
]
print(path_list)
avg = None
num = args.num
assert num == len(path_list)
for path in path_list:
print(f'Processing {path}')
states = paddle.load(path)
if avg is None:
avg = states
else:
for k in avg.keys():
avg[k] += states[k]
# average
for k in avg.keys():
if avg[k] is not None:
avg[k] /= num
paddle.save(avg, args.dst_model)
print(f'Saving to {args.dst_model}')
meta_path = os.path.splitext(args.dst_model)[0] + '.avg.json'
with open(meta_path, 'w') as f:
data = json.dumps({
"mode": 'val_best' if args.val_best else 'latest',
"avg_ckpt": args.dst_model,
"val_loss_mean": avg_val_score,
"ckpts": path_list,
"epochs": selected_epochs.tolist(),
"val_losses": beat_val_scores.tolist(),
})
f.write(data + "\n")
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser(description='average model') avg_ckpts_main()
parser.add_argument('--dst_model', required=True, help='averaged model')
parser.add_argument(
'--ckpt_dir', required=True, help='ckpt model dir for average')
parser.add_argument(
'--val_best', action="store_true", help='averaged model')
parser.add_argument(
'--num', default=5, type=int, help='nums for averaged model')
parser.add_argument(
'--min_epoch',
default=0,
type=int,
help='min epoch used for averaging model')
parser.add_argument(
'--max_epoch',
default=65536, # Big enough
type=int,
help='max epoch used for averaging model')
args = parser.parse_args()
print(args)
main(args)

@ -1,554 +1,5 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2021 Mobvoi Inc. All Rights Reserved. # Copyright 2021 Mobvoi Inc. All Rights Reserved.
import codecs from paddlespeech.dataset.s2t import compute_wer_main
import re
import sys
import unicodedata
remove_tag = True
spacelist = [' ', '\t', '\r', '\n']
puncts = [
'!', ',', '?', '', '', '', '', '', '', '', '', '', '', '', '',
'', ''
]
def characterize(string):
res = []
i = 0
while i < len(string):
char = string[i]
if char in puncts:
i += 1
continue
cat1 = unicodedata.category(char)
#https://unicodebook.readthedocs.io/unicode.html#unicode-categories
if cat1 == 'Zs' or cat1 == 'Cn' or char in spacelist: # space or not assigned
i += 1
continue
if cat1 == 'Lo': # letter-other
res.append(char)
i += 1
else:
# some input looks like: <unk><noise>, we want to separate it to two words.
sep = ' '
if char == '<': sep = '>'
j = i + 1
while j < len(string):
c = string[j]
if ord(c) >= 128 or (c in spacelist) or (c == sep):
break
j += 1
if j < len(string) and string[j] == '>':
j += 1
res.append(string[i:j])
i = j
return res
def stripoff_tags(x):
if not x: return ''
chars = []
i = 0
T = len(x)
while i < T:
if x[i] == '<':
while i < T and x[i] != '>':
i += 1
i += 1
else:
chars.append(x[i])
i += 1
return ''.join(chars)
def normalize(sentence, ignore_words, cs, split=None):
""" sentence, ignore_words are both in unicode
"""
new_sentence = []
for token in sentence:
x = token
if not cs:
x = x.upper()
if x in ignore_words:
continue
if remove_tag:
x = stripoff_tags(x)
if not x:
continue
if split and x in split:
new_sentence += split[x]
else:
new_sentence.append(x)
return new_sentence
class Calculator:
def __init__(self):
self.data = {}
self.space = []
self.cost = {}
self.cost['cor'] = 0
self.cost['sub'] = 1
self.cost['del'] = 1
self.cost['ins'] = 1
def calculate(self, lab, rec):
# Initialization
lab.insert(0, '')
rec.insert(0, '')
while len(self.space) < len(lab):
self.space.append([])
for row in self.space:
for element in row:
element['dist'] = 0
element['error'] = 'non'
while len(row) < len(rec):
row.append({'dist': 0, 'error': 'non'})
for i in range(len(lab)):
self.space[i][0]['dist'] = i
self.space[i][0]['error'] = 'del'
for j in range(len(rec)):
self.space[0][j]['dist'] = j
self.space[0][j]['error'] = 'ins'
self.space[0][0]['error'] = 'non'
for token in lab:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
for token in rec:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
# Computing edit distance
for i, lab_token in enumerate(lab):
for j, rec_token in enumerate(rec):
if i == 0 or j == 0:
continue
min_dist = sys.maxsize
min_error = 'none'
dist = self.space[i - 1][j]['dist'] + self.cost['del']
error = 'del'
if dist < min_dist:
min_dist = dist
min_error = error
dist = self.space[i][j - 1]['dist'] + self.cost['ins']
error = 'ins'
if dist < min_dist:
min_dist = dist
min_error = error
if lab_token == rec_token:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['cor']
error = 'cor'
else:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['sub']
error = 'sub'
if dist < min_dist:
min_dist = dist
min_error = error
self.space[i][j]['dist'] = min_dist
self.space[i][j]['error'] = min_error
# Tracing back
result = {
'lab': [],
'rec': [],
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
i = len(lab) - 1
j = len(rec) - 1
while True:
if self.space[i][j]['error'] == 'cor': # correct
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['cor'] = self.data[lab[i]]['cor'] + 1
result['all'] = result['all'] + 1
result['cor'] = result['cor'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'sub': # substitution
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['sub'] = self.data[lab[i]]['sub'] + 1
result['all'] = result['all'] + 1
result['sub'] = result['sub'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'del': # deletion
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['del'] = self.data[lab[i]]['del'] + 1
result['all'] = result['all'] + 1
result['del'] = result['del'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, "")
i = i - 1
elif self.space[i][j]['error'] == 'ins': # insertion
if len(rec[j]) > 0:
self.data[rec[j]]['ins'] = self.data[rec[j]]['ins'] + 1
result['ins'] = result['ins'] + 1
result['lab'].insert(0, "")
result['rec'].insert(0, rec[j])
j = j - 1
elif self.space[i][j]['error'] == 'non': # starting point
break
else: # shouldn't reach here
print(
'this should not happen , i = {i} , j = {j} , error = {error}'.
format(i=i, j=j, error=self.space[i][j]['error']))
return result
def overall(self):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def cluster(self, data):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in data:
if token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def keys(self):
return list(self.data.keys())
def width(string):
return sum(1 + (unicodedata.east_asian_width(c) in "AFW") for c in string)
def default_cluster(word):
unicode_names = [unicodedata.name(char) for char in word]
for i in reversed(range(len(unicode_names))):
if unicode_names[i].startswith('DIGIT'): # 1
unicode_names[i] = 'Number' # 'DIGIT'
elif (unicode_names[i].startswith('CJK UNIFIED IDEOGRAPH') or
unicode_names[i].startswith('CJK COMPATIBILITY IDEOGRAPH')):
# 明 / 郎
unicode_names[i] = 'Mandarin' # 'CJK IDEOGRAPH'
elif (unicode_names[i].startswith('LATIN CAPITAL LETTER') or
unicode_names[i].startswith('LATIN SMALL LETTER')):
# A / a
unicode_names[i] = 'English' # 'LATIN LETTER'
elif unicode_names[i].startswith('HIRAGANA LETTER'): # は こ め
unicode_names[i] = 'Japanese' # 'GANA LETTER'
elif (unicode_names[i].startswith('AMPERSAND') or
unicode_names[i].startswith('APOSTROPHE') or
unicode_names[i].startswith('COMMERCIAL AT') or
unicode_names[i].startswith('DEGREE CELSIUS') or
unicode_names[i].startswith('EQUALS SIGN') or
unicode_names[i].startswith('FULL STOP') or
unicode_names[i].startswith('HYPHEN-MINUS') or
unicode_names[i].startswith('LOW LINE') or
unicode_names[i].startswith('NUMBER SIGN') or
unicode_names[i].startswith('PLUS SIGN') or
unicode_names[i].startswith('SEMICOLON')):
# & / ' / @ / ℃ / = / . / - / _ / # / + / ;
del unicode_names[i]
else:
return 'Other'
if len(unicode_names) == 0:
return 'Other'
if len(unicode_names) == 1:
return unicode_names[0]
for i in range(len(unicode_names) - 1):
if unicode_names[i] != unicode_names[i + 1]:
return 'Other'
return unicode_names[0]
def usage():
print(
"compute-wer.py : compute word error rate (WER) and align recognition results and references."
)
print(
" usage : python compute-wer.py [--cs={0,1}] [--cluster=foo] [--ig=ignore_file] [--char={0,1}] [--v={0,1}] [--padding-symbol={space,underline}] test.ref test.hyp > test.wer"
)
if __name__ == '__main__': if __name__ == '__main__':
if len(sys.argv) == 1: compute_wer_main()
usage()
sys.exit(0)
calculator = Calculator()
cluster_file = ''
ignore_words = set()
tochar = False
verbose = 1
padding_symbol = ' '
case_sensitive = False
max_words_per_line = sys.maxsize
split = None
while len(sys.argv) > 3:
a = '--maxw='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):]
del sys.argv[1]
max_words_per_line = int(b)
continue
a = '--rt='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
remove_tag = (b == 'true') or (b != '0')
continue
a = '--cs='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
case_sensitive = (b == 'true') or (b != '0')
continue
a = '--cluster='
if sys.argv[1].startswith(a):
cluster_file = sys.argv[1][len(a):]
del sys.argv[1]
continue
a = '--splitfile='
if sys.argv[1].startswith(a):
split_file = sys.argv[1][len(a):]
del sys.argv[1]
split = dict()
with codecs.open(split_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
words = line.strip().split()
if len(words) >= 2:
split[words[0]] = words[1:]
continue
a = '--ig='
if sys.argv[1].startswith(a):
ignore_file = sys.argv[1][len(a):]
del sys.argv[1]
with codecs.open(ignore_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
line = line.strip()
if len(line) > 0:
ignore_words.add(line)
continue
a = '--char='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
tochar = (b == 'true') or (b != '0')
continue
a = '--v='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
verbose = 0
try:
verbose = int(b)
except:
if b == 'true' or b != '0':
verbose = 1
continue
a = '--padding-symbol='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
if b == 'space':
padding_symbol = ' '
elif b == 'underline':
padding_symbol = '_'
continue
if True or sys.argv[1].startswith('-'):
#ignore invalid switch
del sys.argv[1]
continue
if not case_sensitive:
ig = set([w.upper() for w in ignore_words])
ignore_words = ig
default_clusters = {}
default_words = {}
ref_file = sys.argv[1]
hyp_file = sys.argv[2]
rec_set = {}
if split and not case_sensitive:
newsplit = dict()
for w in split:
words = split[w]
for i in range(len(words)):
words[i] = words[i].upper()
newsplit[w.upper()] = words
split = newsplit
with codecs.open(hyp_file, 'r', 'utf-8') as fh:
for line in fh:
if tochar:
array = characterize(line)
else:
array = line.strip().split()
if len(array) == 0: continue
fid = array[0]
rec_set[fid] = normalize(array[1:], ignore_words, case_sensitive,
split)
# compute error rate on the interaction of reference file and hyp file
for line in open(ref_file, 'r', encoding='utf-8'):
if tochar:
array = characterize(line)
else:
array = line.rstrip('\n').split()
if len(array) == 0: continue
fid = array[0]
if fid not in rec_set:
continue
lab = normalize(array[1:], ignore_words, case_sensitive, split)
rec = rec_set[fid]
if verbose:
print('\nutt: %s' % fid)
for word in rec + lab:
if word not in default_words:
default_cluster_name = default_cluster(word)
if default_cluster_name not in default_clusters:
default_clusters[default_cluster_name] = {}
if word not in default_clusters[default_cluster_name]:
default_clusters[default_cluster_name][word] = 1
default_words[word] = default_cluster_name
result = calculator.calculate(lab, rec)
if verbose:
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('WER: %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
space = {}
space['lab'] = []
space['rec'] = []
for idx in range(len(result['lab'])):
len_lab = width(result['lab'][idx])
len_rec = width(result['rec'][idx])
length = max(len_lab, len_rec)
space['lab'].append(length - len_lab)
space['rec'].append(length - len_rec)
upper_lab = len(result['lab'])
upper_rec = len(result['rec'])
lab1, rec1 = 0, 0
while lab1 < upper_lab or rec1 < upper_rec:
if verbose > 1:
print('lab(%s):' % fid.encode('utf-8'), end=' ')
else:
print('lab:', end=' ')
lab2 = min(upper_lab, lab1 + max_words_per_line)
for idx in range(lab1, lab2):
token = result['lab'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['lab'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print()
if verbose > 1:
print('rec(%s):' % fid.encode('utf-8'), end=' ')
else:
print('rec:', end=' ')
rec2 = min(upper_rec, rec1 + max_words_per_line)
for idx in range(rec1, rec2):
token = result['rec'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['rec'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print('\n', end='\n')
lab1 = lab2
rec1 = rec2
if verbose:
print(
'==========================================================================='
)
print()
result = calculator.overall()
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('Overall -> %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if not verbose:
print()
if verbose:
for cluster_id in default_clusters:
result = calculator.cluster(
[k for k in default_clusters[cluster_id]])
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if len(cluster_file) > 0: # compute separated WERs for word clusters
cluster_id = ''
cluster = []
for line in open(cluster_file, 'r', encoding='utf-8'):
for token in line.decode('utf-8').rstrip('\n').split():
# end of cluster reached, like </Keyword>
if token[0:2] == '</' and token[len(token)-1] == '>' and \
token.lstrip('</').rstrip('>') == cluster_id :
result = calculator.cluster(cluster)
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'],
result['del'], result['ins']))
cluster_id = ''
cluster = []
# begin of cluster reached, like <Keyword>
elif token[0] == '<' and token[len(token)-1] == '>' and \
cluster_id == '' :
cluster_id = token.lstrip('<').rstrip('>')
cluster = []
# general terms, like WEATHER / CAR / ...
else:
cluster.append(token)
print()
print(
'==========================================================================='
)

@ -11,96 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import argparse from paddlespeech.dataset.s2t import format_rsl_main
import jsonlines if __name__ == '__main__':
format_rsl_main()
def trans_hyp(origin_hyp, trans_hyp=None, trans_hyp_sclite=None):
"""
Args:
origin_hyp: The input json file which contains the model output
trans_hyp: The output file for caculate CER/WER
trans_hyp_sclite: The output file for caculate CER/WER using sclite
"""
input_dict = {}
with open(origin_hyp, "r+", encoding="utf8") as f:
for item in jsonlines.Reader(f):
input_dict[item["utt"]] = item["hyps"][0]
if trans_hyp is not None:
with open(trans_hyp, "w+", encoding="utf8") as f:
for key in input_dict.keys():
f.write(key + " " + input_dict[key] + "\n")
if trans_hyp_sclite is not None:
with open(trans_hyp_sclite, "w+") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
def trans_ref(origin_ref, trans_ref=None, trans_ref_sclite=None):
"""
Args:
origin_hyp: The input json file which contains the model output
trans_hyp: The output file for caculate CER/WER
trans_hyp_sclite: The output file for caculate CER/WER using sclite
"""
input_dict = {}
with open(origin_ref, "r", encoding="utf8") as f:
for item in jsonlines.Reader(f):
input_dict[item["utt"]] = item["text"]
if trans_ref is not None:
with open(trans_ref, "w", encoding="utf8") as f:
for key in input_dict.keys():
f.write(key + " " + input_dict[key] + "\n")
if trans_ref_sclite is not None:
with open(trans_ref_sclite, "w") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog='format hyp file for compute CER/WER', add_help=True)
parser.add_argument(
'--origin_hyp', type=str, default=None, help='origin hyp file')
parser.add_argument(
'--trans_hyp',
type=str,
default=None,
help='hyp file for caculating CER/WER')
parser.add_argument(
'--trans_hyp_sclite',
type=str,
default=None,
help='hyp file for caculating CER/WER by sclite')
parser.add_argument(
'--origin_ref', type=str, default=None, help='origin ref file')
parser.add_argument(
'--trans_ref',
type=str,
default=None,
help='ref file for caculating CER/WER')
parser.add_argument(
'--trans_ref_sclite',
type=str,
default=None,
help='ref file for caculating CER/WER by sclite')
parser_args = parser.parse_args()
if parser_args.origin_hyp is not None:
trans_hyp(
origin_hyp=parser_args.origin_hyp,
trans_hyp=parser_args.trans_hyp,
trans_hyp_sclite=parser_args.trans_hyp_sclite, )
if parser_args.origin_ref is not None:
trans_ref(
origin_ref=parser_args.origin_ref,
trans_ref=parser_args.trans_ref,
trans_ref_sclite=parser_args.trans_ref_sclite, )

Loading…
Cancel
Save