|
|
|
@ -1,7 +1,20 @@
|
|
|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import paddle
|
|
|
|
|
from paddle import nn
|
|
|
|
|
from paddlespeech.s2t.modules.initializer import KaimingUniform
|
|
|
|
|
|
|
|
|
|
from paddlespeech.s2t.modules.initializer import KaimingUniform
|
|
|
|
|
"""
|
|
|
|
|
To align the initializer between paddle and torch,
|
|
|
|
|
the API below are set defalut initializer with priority higger than global initializer.
|
|
|
|
@ -10,65 +23,117 @@ global_init_type = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LayerNorm(nn.LayerNorm):
|
|
|
|
|
def __init__(self, normalized_shape, epsilon=1e-05, weight_attr=None, bias_attr=None, name=None):
|
|
|
|
|
def __init__(self,
|
|
|
|
|
normalized_shape,
|
|
|
|
|
epsilon=1e-05,
|
|
|
|
|
weight_attr=None,
|
|
|
|
|
bias_attr=None,
|
|
|
|
|
name=None):
|
|
|
|
|
if weight_attr is None:
|
|
|
|
|
weight_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=nn.initializer.Constant(1.0))
|
|
|
|
|
if bias_attr is None:
|
|
|
|
|
bias_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=nn.initializer.Constant(0.0))
|
|
|
|
|
super(LayerNorm, self).__init__(normalized_shape, epsilon, weight_attr, bias_attr, name)
|
|
|
|
|
super(LayerNorm, self).__init__(normalized_shape, epsilon, weight_attr,
|
|
|
|
|
bias_attr, name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BatchNorm1D(nn.BatchNorm1D):
|
|
|
|
|
def __init__(self, num_features, momentum=0.9, epsilon=1e-05, weight_attr=None, bias_attr=None, data_format='NCL', name=None):
|
|
|
|
|
def __init__(self,
|
|
|
|
|
num_features,
|
|
|
|
|
momentum=0.9,
|
|
|
|
|
epsilon=1e-05,
|
|
|
|
|
weight_attr=None,
|
|
|
|
|
bias_attr=None,
|
|
|
|
|
data_format='NCL',
|
|
|
|
|
name=None):
|
|
|
|
|
if weight_attr is None:
|
|
|
|
|
weight_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=nn.initializer.Constant(1.0))
|
|
|
|
|
if bias_attr is None:
|
|
|
|
|
bias_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=nn.initializer.Constant(0.0))
|
|
|
|
|
super(BatchNorm1D, self).__init__(num_features, momentum, epsilon, weight_attr, bias_attr, data_format, name)
|
|
|
|
|
super(BatchNorm1D,
|
|
|
|
|
self).__init__(num_features, momentum, epsilon, weight_attr,
|
|
|
|
|
bias_attr, data_format, name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Embedding(nn.Embedding):
|
|
|
|
|
def __init__(self, num_embeddings, embedding_dim, padding_idx=None, sparse=False, weight_attr=None, name=None):
|
|
|
|
|
def __init__(self,
|
|
|
|
|
num_embeddings,
|
|
|
|
|
embedding_dim,
|
|
|
|
|
padding_idx=None,
|
|
|
|
|
sparse=False,
|
|
|
|
|
weight_attr=None,
|
|
|
|
|
name=None):
|
|
|
|
|
if weight_attr is None:
|
|
|
|
|
weight_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=nn.initializer.Normal())
|
|
|
|
|
super(Embedding, self).__init__(num_embeddings, embedding_dim, padding_idx, sparse, weight_attr, name)
|
|
|
|
|
weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal())
|
|
|
|
|
super(Embedding, self).__init__(num_embeddings, embedding_dim,
|
|
|
|
|
padding_idx, sparse, weight_attr, name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Linear(nn.Linear):
|
|
|
|
|
def __init__(self, in_features, out_features, weight_attr=None, bias_attr=None, name=None):
|
|
|
|
|
if weight_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
weight_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=KaimingUniform())
|
|
|
|
|
if bias_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
bias_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=KaimingUniform())
|
|
|
|
|
super(Linear, self).__init__(in_features, out_features, weight_attr, bias_attr, name)
|
|
|
|
|
def __init__(self,
|
|
|
|
|
in_features,
|
|
|
|
|
out_features,
|
|
|
|
|
weight_attr=None,
|
|
|
|
|
bias_attr=None,
|
|
|
|
|
name=None):
|
|
|
|
|
if weight_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
weight_attr = paddle.ParamAttr(initializer=KaimingUniform())
|
|
|
|
|
if bias_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
bias_attr = paddle.ParamAttr(initializer=KaimingUniform())
|
|
|
|
|
super(Linear, self).__init__(in_features, out_features, weight_attr,
|
|
|
|
|
bias_attr, name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Conv1D(nn.Conv1D):
|
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', weight_attr=None, bias_attr=None, data_format='NCL'):
|
|
|
|
|
def __init__(self,
|
|
|
|
|
in_channels,
|
|
|
|
|
out_channels,
|
|
|
|
|
kernel_size,
|
|
|
|
|
stride=1,
|
|
|
|
|
padding=0,
|
|
|
|
|
dilation=1,
|
|
|
|
|
groups=1,
|
|
|
|
|
padding_mode='zeros',
|
|
|
|
|
weight_attr=None,
|
|
|
|
|
bias_attr=None,
|
|
|
|
|
data_format='NCL'):
|
|
|
|
|
if weight_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
print("set kaiming_uniform")
|
|
|
|
|
weight_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=KaimingUniform())
|
|
|
|
|
weight_attr = paddle.ParamAttr(initializer=KaimingUniform())
|
|
|
|
|
if bias_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
bias_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=KaimingUniform())
|
|
|
|
|
super(Conv1D, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, padding_mode, weight_attr, bias_attr, data_format)
|
|
|
|
|
bias_attr = paddle.ParamAttr(initializer=KaimingUniform())
|
|
|
|
|
super(Conv1D, self).__init__(
|
|
|
|
|
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
|
|
|
|
groups, padding_mode, weight_attr, bias_attr, data_format)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Conv2D(nn.Conv2D):
|
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', weight_attr=None, bias_attr=None, data_format='NCHW'):
|
|
|
|
|
if weight_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
weight_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=KaimingUniform())
|
|
|
|
|
if bias_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
bias_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=KaimingUniform())
|
|
|
|
|
super(Conv2D, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, padding_mode, weight_attr, bias_attr, data_format)
|
|
|
|
|
def __init__(self,
|
|
|
|
|
in_channels,
|
|
|
|
|
out_channels,
|
|
|
|
|
kernel_size,
|
|
|
|
|
stride=1,
|
|
|
|
|
padding=0,
|
|
|
|
|
dilation=1,
|
|
|
|
|
groups=1,
|
|
|
|
|
padding_mode='zeros',
|
|
|
|
|
weight_attr=None,
|
|
|
|
|
bias_attr=None,
|
|
|
|
|
data_format='NCHW'):
|
|
|
|
|
if weight_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
weight_attr = paddle.ParamAttr(initializer=KaimingUniform())
|
|
|
|
|
if bias_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
bias_attr = paddle.ParamAttr(initializer=KaimingUniform())
|
|
|
|
|
super(Conv2D, self).__init__(
|
|
|
|
|
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
|
|
|
|
groups, padding_mode, weight_attr, bias_attr, data_format)
|
|
|
|
|