support cpu, test=asr

pull/1877/head
root 3 years ago
parent 864041085f
commit 9f389a7a33

@ -26,7 +26,8 @@ def get_audios(path):
"""
supported_formats = [".wav", ".mp3", ".ogg", ".flac", ".m4a"]
return [
item for sublist in [[os.path.join(dir, file) for file in files]
item
for sublist in [[os.path.join(dir, file) for file in files]
for dir, _, files in list(os.walk(path))]
for item in sublist if os.path.splitext(item)[1] in supported_formats
]

@ -20,11 +20,20 @@ if [ ${seed} != 0 ]; then
export FLAGS_cudnn_deterministic=True
fi
if [ ${ngpu} == 0 ]; then
python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--seed ${seed}
else
python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/train.py \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--seed ${seed}
fi
if [ ${seed} != 0 ]; then
unset FLAGS_cudnn_deterministic

@ -2,7 +2,7 @@
set -e
source path.sh
gpus=0,1,2,3
gpus=1,2,3
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml #conf/deepspeech2.yaml or conf/deepspeech2_online.yaml

@ -27,6 +27,16 @@ ckpt_name=$2
mkdir -p exp
if [ ${ngpu} == 0 ]; then
python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--seed ${seed} \
--config ${config_path} \
--output exp/${ckpt_name} \
--profiler-options "${profiler_options}" \
--benchmark-batch-size ${benchmark_batch_size} \
--benchmark-max-step ${benchmark_max_step}
else
python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/train.py \
--seed ${seed} \
--config ${config_path} \
@ -34,6 +44,7 @@ python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/t
--profiler-options "${profiler_options}" \
--benchmark-batch-size ${benchmark_batch_size} \
--benchmark-max-step ${benchmark_max_step}
fi
if [ ${seed} != 0 ]; then

@ -21,10 +21,18 @@ if [ ${seed} != 0 ]; then
export FLAGS_cudnn_deterministic=True
fi
if [ ${ngpu} == 0 ]; then
python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--seed ${seed}
else
python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/train.py \
--config ${config_path} \
--output exp/${ckpt_name} \
--seed ${seed}
fi
if [ ${seed} != 0 ]; then
unset FLAGS_cudnn_deterministic

@ -20,11 +20,20 @@ if [ ${seed} != 0 ]; then
export FLAGS_cudnn_deterministic=True
fi
if [ ${ngpu} == 0 ]; then
python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--seed ${seed}
else
python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/train.py \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--seed ${seed}
fi
if [ ${seed} != 0 ]; then
unset FLAGS_cudnn_deterministic

@ -22,10 +22,18 @@ fi
# export FLAGS_cudnn_exhaustive_search=true
# export FLAGS_conv_workspace_size_limit=4000
if [ ${ngpu} == 0 ]; then
python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--seed ${seed}
else
python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/train.py \
--config ${config_path} \
--output exp/${ckpt_name} \
--seed ${seed}
fi
if [ ${seed} != 0 ]; then
unset FLAGS_cudnn_deterministic

@ -19,11 +19,20 @@ if [ ${seed} != 0 ]; then
export FLAGS_cudnn_deterministic=True
fi
if [ ${ngpu} == 0 ]; then
python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--model-name u2_kaldi \
--config ${config_path} \
--output exp/${ckpt_name} \
--seed ${seed}
else
python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/train.py \
--model-name u2_kaldi \
--config ${config_path} \
--output exp/${ckpt_name} \
--seed ${seed}
fi
if [ ${seed} != 0 ]; then
unset FLAGS_cudnn_deterministic

@ -26,12 +26,22 @@ model_type=$3
mkdir -p exp
if [ ${ngpu} == 0 ]; then
python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--profiler-options "${profiler_options}" \
--seed ${seed}
else
python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/train.py \
--config ${config_path} \
--output exp/${ckpt_name} \
--model_type ${model_type} \
--profiler-options "${profiler_options}" \
--seed ${seed}
fi
if [ ${seed} != 0 ]; then
unset FLAGS_cudnn_deterministic

@ -27,6 +27,16 @@ ckpt_name=$2
mkdir -p exp
if [ ${ngpu} == 0 ]; then
python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--seed ${seed} \
--config ${config_path} \
--output exp/${ckpt_name} \
--profiler-options "${profiler_options}" \
--benchmark-batch-size ${benchmark_batch_size} \
--benchmark-max-step ${benchmark_max_step}
else
python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/train.py \
--seed ${seed} \
--config ${config_path} \
@ -34,6 +44,7 @@ python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/t
--profiler-options "${profiler_options}" \
--benchmark-batch-size ${benchmark_batch_size} \
--benchmark-max-step ${benchmark_max_step}
fi
if [ ${seed} != 0 ]; then

@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Trainer for DeepSpeech2 model."""
from paddle import distributed as dist
from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Trainer as Trainer

@ -15,7 +15,6 @@
import cProfile
import os
from paddle import distributed as dist
from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2.model import U2Trainer as Trainer

@ -15,7 +15,6 @@
import cProfile
import os
from paddle import distributed as dist
from yacs.config import CfgNode
from paddlespeech.s2t.training.cli import default_argument_parser

@ -15,7 +15,6 @@
import cProfile
import os
from paddle import distributed as dist
from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2_st.model import U2STTrainer as Trainer

@ -51,7 +51,7 @@ def _batch_shuffle(indices, batch_size, epoch, clipped=False):
"""
rng = np.random.RandomState(epoch)
shift_len = rng.randint(0, batch_size - 1)
batch_indices = list(zip(* [iter(indices[shift_len:])] * batch_size))
batch_indices = list(zip(*[iter(indices[shift_len:])] * batch_size))
rng.shuffle(batch_indices)
batch_indices = [item for batch in batch_indices for item in batch]
assert clipped is False

@ -36,4 +36,4 @@ def repeat(N, fn):
Returns:
MultiSequential: Repeated model instance.
"""
return MultiSequential(* [fn(n) for n in range(N)])
return MultiSequential(*[fn(n) for n in range(N)])

Loading…
Cancel
Save