commit
9e2dac666d
Before Width: | Height: | Size: 85 KiB |
Before Width: | Height: | Size: 46 KiB |
Binary file not shown.
Before Width: | Height: | Size: 47 KiB |
@ -1,70 +0,0 @@
|
||||
# chinese syllable
|
||||
|
||||
|
||||
|
||||
## Syllable
|
||||
|
||||
* [List of Syllables in Pinyin](https://resources.allsetlearning.com/chinese/pronunciation/syllable)
|
||||
The word syllable is a term referring to the units of a word, composed on an (optional) initial, a final, and a tone.
|
||||
|
||||
The word "syllable" is 音节 (yīnjié) in Chinese.
|
||||
|
||||
Most spoken syllables in Mandarin Chinese correspond to one written Chinese character.
|
||||
|
||||
There are a total of 410 common pinyin syllables.
|
||||
|
||||
* [Rare syllable](https://resources.allsetlearning.com/chinese/pronunciation/Rare_syllable)
|
||||
|
||||
* [Chinese Pronunciation: The Complete Guide for Beginner](https://www.digmandarin.com/chinese-pronunciation-guide.html)
|
||||
|
||||
* [Mandarin Chinese Phonetics](http://www.zein.se/patrick/chinen8p.html)
|
||||
|
||||
* [chinese phonetics](https://www.easymandarin.cn/online-chinese-lessons/chinese-phonetics/)
|
||||
Chinese Characters, called “Hanzi”, are the writing symbols of the Chinese language.
|
||||
Pinyin is the Romanization of a phonetic notation for Chinese Characters.
|
||||
Each syllable is composed of three parts: initials, finals, and tones.
|
||||
In the Pinyin system there are 23 initials, 24 finals, 4 tones and a neutral tone.
|
||||
|
||||
|
||||
|
||||
## Pinyin
|
||||
* [Pinyin](https://en.wikipedia.org/wiki/Pinyin)
|
||||
* [Pinyin quick start guide](https://resources.allsetlearning.com/chinese/pronunciation/Pinyin_quick_start_guide)
|
||||
* [Pinyin Table](https://en.wikipedia.org/wiki/Pinyin_table)
|
||||
* [Piyin Chat](https://resources.allsetlearning.com/chinese/pronunciation/Pinyin_chart)
|
||||
* [Mandarin Chinese Pinyin Table](https://www.archchinese.com/chinese_pinyin.html)
|
||||
* [Chinese Pinyin Table ](http://www.quickmandarin.com/chinesepinyintable/)
|
||||
|
||||
|
||||
|
||||
## Tones
|
||||
* [Four tones](https://resources.allsetlearning.com/chinese/pronunciation/Four_tones)
|
||||
* [Neutral tone](https://resources.allsetlearning.com/chinese/pronunciation/Neutral_tone)
|
||||
* [Where do the tone marks go?](http://www.pinyin.info/rules/where.html)
|
||||
* [声调符号标在哪儿?](http://www.hwjyw.com/resource/content/2010/06/04/8183.shtml)
|
||||
|
||||
|
||||
|
||||
## Zhuyin
|
||||
|
||||
* [Bopomofo](https://en.wikipedia.org/wiki/Bopomofo)
|
||||
* [Zhuyin table](https://en.wikipedia.org/wiki/Zhuyin_table)
|
||||
|
||||
|
||||
|
||||
## Tone sandhi
|
||||
|
||||
* https://zh.wikipedia.org/wiki/%E8%AE%8A%E8%AA%BF
|
||||
|
||||
* https://github.com/mozillazg/python-pinyin/issues/133
|
||||
|
||||
pypinyin关于变调错误的评估
|
||||
|
||||
|
||||
|
||||
## tools
|
||||
|
||||
* https://github.com/KuangDD/phkit
|
||||
* https://github.com/mozillazg/python-pinyin
|
||||
* https://github.com/Kyubyong/g2pC
|
||||
* https://github.com/kakaobrain/g2pM
|
@ -1,29 +0,0 @@
|
||||
# CRF([Conditional Random Fields](http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/))
|
||||
|
||||
## Repos
|
||||
|
||||
* https://github.com/kmkurn/pytorch-crf
|
||||
* https://github.com/allenai/allennlp
|
||||
* https://github.com/mtreviso/linear-chain-crf
|
||||
|
||||
## Reference
|
||||
|
||||
* [Overview of Conditional Random Fields](https://medium.com/ml2vec/overview-of-conditional-random-fields-68a2a20fa541)
|
||||
* [Introduction to Conditional Random Fields](http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/)]
|
||||
* [Viterbi algorithm](https://en.wikipedia.org/wiki/Viterbi_algorithm)
|
||||
* [Conditional Random Field Tutorial in PyTorch](https://towardsdatascience.com/conditional-random-field-tutorial-in-pytorch-ca0d04499463)
|
||||
* [Implementing a linear-chain Conditional Random Field (CRF) in PyTorch](https://towardsdatascience.com/implementing-a-linear-chain-conditional-random-field-crf-in-pytorch-16b0b9c4b4ea)
|
||||
|
||||
* .https://homepages.inf.ed.ac.uk/csutton/publications/crftutv2.pdf
|
||||
* [Implementing a linear-chain Conditional Random Field (CRF) in PyTorch](https://towardsdatascience.com/implementing-a-linear-chain-conditional-random-field-crf-in-pytorch-16b0b9c4b4ea)
|
||||
|
||||
|
||||
|
||||
* http://www.cs.columbia.edu/~mcollins/
|
||||
|
||||
* [Tagging Problems, and Hidden Markov Models](http://www.cs.columbia.edu/~mcollins/hmms-spring2013.pdf)
|
||||
* http://www.cs.columbia.edu/~mcollins/crf.pdf
|
||||
* [The Forward-Backward Algorithm](http://www.cs.columbia.edu/~mcollins/fb.pdf)
|
||||
|
||||
* [The Naive Bayes Model, Maximum-Likelihood Estimation, and the EM Algorithm](http://www.cs.columbia.edu/~mcollins/em.pdf)
|
||||
|
@ -1,21 +0,0 @@
|
||||
# Dataset
|
||||
|
||||
## Text
|
||||
|
||||
* [Tatoeba](https://tatoeba.org/cmn)
|
||||
|
||||
**Tatoeba is a collection of sentences and translations.** It's collaborative, open, free and even addictive. An open data initiative aimed at translation and speech recognition.
|
||||
|
||||
|
||||
|
||||
## Speech
|
||||
|
||||
* [Tatoeba](https://tatoeba.org/cmn)
|
||||
|
||||
**Tatoeba is a collection of sentences and translations.** It's collaborative, open, free and even addictive. An open data initiative aimed at translation and speech recognition.
|
||||
|
||||
|
||||
|
||||
### ASR Noise
|
||||
|
||||
* [asr-noises](https://github.com/speechio/asr-noises)
|
@ -1,10 +0,0 @@
|
||||
# Decoding
|
||||
|
||||
## Reference
|
||||
|
||||
* [时间戳和N-Best](https://mp.weixin.qq.com/s?__biz=MzU2NjUwMTgxOQ==&mid=2247483956&idx=1&sn=80ce595238d84155d50f08c0d52267d3&chksm=fcaacae0cbdd43f62b1da60c8e8671a9e0bb2aeee94f58751839b03a1c45b9a3889b96705080&scene=21#wechat_redirect)
|
||||
|
||||
* [Viterbi algorithm](https://en.wikipedia.org/wiki/Viterbi_algorithm)
|
||||
|
||||
* [如何通俗地讲解 viterbi 算法](https://www.zhihu.com/question/20136144)
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,14 +0,0 @@
|
||||
# 线性代数
|
||||
|
||||
* https://www.3blue1brown.com/
|
||||
|
||||
* https://www.zhihu.com/column/c_1068883024023834624
|
||||
|
||||
### 矩阵分解
|
||||
|
||||
* [LU分解](https://zhuanlan.zhihu.com/p/54943042)
|
||||
* [QR分解](https://zhuanlan.zhihu.com/p/54957185)
|
||||
* SVD分解
|
||||
* PCA分解
|
||||
* NMF分解
|
||||
|
@ -1,3 +0,0 @@
|
||||
# Useful Tools
|
||||
|
||||
* [正则可视化和常用正则表达式](https://wangwl.net/static/projects/visualRegex/#)
|
Loading…
Reference in new issue