add cmvn and label smoothing loss layer

pull/556/head
Hui Zhang 5 years ago
parent 4c8c2178af
commit 9cf8c1a5db

@ -0,0 +1,54 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I
logger = logging.getLogger(__name__)
__all__ = ['GlobalCMVN']
class GlobalCMVN(nn.Layer):
def __init__(self,
mean: paddle.Tensor,
istd: paddle.Tensor,
norm_var: bool=True):
"""
Args:
mean (paddle.Tensor): mean stats
istd (paddle.Tensor): inverse std, std which is 1.0 / std
"""
super().__init__()
assert mean.shape == istd.shape
self.norm_var = norm_var
# The buffer can be accessed from this module using self.mean
self.register_buffer("mean", mean)
self.register_buffer("istd", istd)
def forward(self, x: paddle.Tensor):
"""
Args:
x (paddle.Tensor): (batch, max_len, feat_dim)
Returns:
(paddle.Tensor): normalized feature
"""
x = x - self.mean
if self.norm_var:
x = x * self.istd
return x

@ -21,7 +21,7 @@ from paddle.nn import initializer as I
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
__all__ = ['CTCLoss'] __all__ = ['CTCLoss', "LabelSmoothingLoss"]
# TODO(Hui Zhang): remove this hack, when `norm_by_times=True` is added # TODO(Hui Zhang): remove this hack, when `norm_by_times=True` is added
@ -80,3 +80,81 @@ class CTCLoss(nn.Layer):
# Batch-size average # Batch-size average
# loss = loss / paddle.shape(logits)[1] # loss = loss / paddle.shape(logits)[1]
return loss return loss
class LabelSmoothingLoss(nn.Layer):
"""Label-smoothing loss.
In a standard CE loss, the label's data distribution is:
[0,1,2] ->
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
]
In the smoothing version CE Loss,some probabilities
are taken from the true label prob (1.0) and are divided
among other labels.
e.g.
smoothing=0.1
[0,1,2] ->
[
[0.9, 0.05, 0.05],
[0.05, 0.9, 0.05],
[0.05, 0.05, 0.9],
]
"""
def __init__(self,
size: int,
padding_idx: int,
smoothing: float,
normalize_length: bool=False):
"""Label-smoothing loss.
Args:
size (int): the number of class
padding_idx (int): padding class id which will be ignored for loss
smoothing (float): smoothing rate (0.0 means the conventional CE)
normalize_length (bool): True, normalize loss by sequence length; False, normalize loss by batch size. Defaults to False.
"""
super().__init__()
self.size = size
self.padding_idx = padding_idx
self.smoothing = smoothing
self.confidence = 1.0 - smoothing
self.normalize_length = normalize_length
self.criterion = nn.KLDivLoss(reduction="none")
def forward(self, x: paddle.Tensor, target: paddle.Tensor) -> paddle.Tensor:
"""Compute loss between x and target.
The model outputs and data labels tensors are flatten to
(batch*seqlen, class) shape and a mask is applied to the
padding part which should not be calculated for loss.
Args:
x (paddle.Tensor): prediction (batch, seqlen, class)
target (paddle.Tensor):
target signal masked with self.padding_id (batch, seqlen)
Returns:
loss (paddle.Tensor) : The KL loss, scalar float value
"""
B, T, D = paddle.shape(x)
assert D == self.size
x = x.reshape((-1, self.size))
target = target.reshape(-1)
# use zeros_like instead of torch.no_grad() for true_dist,
# since no_grad() can not be exported by JIT
true_dist = paddle.full_like(x, self.smoothing / (self.size - 1))
ignore = target == self.padding_idx # (B,)
ignore = ignore.cast(target.dtype)
target = target * (1 - ignore) # avoid -1 index
true_dist += F.one_hot(target, self.size) * self.confidence
kl = self.criterion(F.log_softmax(x, axis=1), true_dist)
total = len(target) - int(ignore.sum())
denom = total if self.normalize_length else B
numer = (kl * (1 - ignore)).sum()
return numer / denom

Loading…
Cancel
Save