Merge pull request #1048 from KPatr1ck/cli

[CLI]Update asr inference in paddlespeech.cli.
pull/1069/head
Hui Zhang 3 years ago committed by GitHub
commit 9c57808fb7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -5,5 +5,5 @@
## Help
`paddlespeech help`
## S2T
`paddlespeech s2t --config ./s2t.yaml --input ./zh.wav --device gpu`
## ASR
`paddlespeech asr --input ./test_audio.wav`

@ -11,6 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .asr import ASRExecutor
from .base_commands import BaseCommand
from .base_commands import HelpCommand
from .s2t import S2TExecutor

@ -11,4 +11,4 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .infer import S2TExecutor
from .infer import ASRExecutor

@ -0,0 +1,422 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
from typing import List
from typing import Optional
from typing import Union
import librosa
import paddle
import soundfile
from yacs.config import CfgNode
import numpy as np
from ..executor import BaseExecutor
from ..utils import cli_register
from ..utils import download_and_decompress
from ..utils import logger
from ..utils import MODEL_HOME
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.transform.transformation import Transformation
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.s2t.utils.utility import UpdateConfig
__all__ = ['ASRExecutor']
pretrained_models = {
"wenetspeech_zh_16k": {
'url':
'https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/conformer.model.tar.gz',
'md5':
'54e7a558a6e020c2f5fb224874943f97',
'cfg_path':
'conf/conformer.yaml',
'ckpt_path':
'exp/conformer/checkpoints/wenetspeech',
}
}
model_alias = {
"ds2_offline": "paddlespeech.s2t.models.ds2:DeepSpeech2Model",
"ds2_online": "paddlespeech.s2t.models.ds2_online:DeepSpeech2ModelOnline",
"conformer": "paddlespeech.s2t.models.u2:U2Model",
"transformer": "paddlespeech.s2t.models.u2:U2Model",
"wenetspeech": "paddlespeech.s2t.models.u2:U2Model",
}
@cli_register(
name='paddlespeech.asr', description='Speech to text infer command.')
class ASRExecutor(BaseExecutor):
def __init__(self):
super(ASRExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech.asr', add_help=True)
self.parser.add_argument(
'--input', type=str, required=True, help='Audio file to recognize.')
self.parser.add_argument(
'--model',
type=str,
default='wenetspeech',
help='Choose model type of asr task.')
self.parser.add_argument(
'--lang',
type=str,
default='zh',
help='Choose model language. zh or en')
self.parser.add_argument(
"--sr",
type=int,
default=16000,
choices=[8000, 16000],
help='Choose the audio sample rate of the model. 8000 or 16000')
self.parser.add_argument(
'--config',
type=str,
default=None,
help='Config of asr task. Use deault config when it is None.')
self.parser.add_argument(
'--ckpt_path',
type=str,
default=None,
help='Checkpoint file of model.')
self.parser.add_argument(
'--device',
type=str,
default=paddle.get_device(),
help='Choose device to execute model inference.')
def _get_pretrained_path(self, tag: str) -> os.PathLike:
"""
Download and returns pretrained resources path of current task.
"""
assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format(
tag)
res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag],
res_path)
decompressed_path = os.path.abspath(decompressed_path)
logger.info(
'Use pretrained model stored in: {}'.format(decompressed_path))
return decompressed_path
def _init_from_path(self,
model_type: str='wenetspeech',
lang: str='zh',
sample_rate: int=16000,
cfg_path: Optional[os.PathLike]=None,
ckpt_path: Optional[os.PathLike]=None
):
"""
Init model and other resources from a specific path.
"""
if cfg_path is None or ckpt_path is None:
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
tag = model_type + '_' + lang + '_' + sample_rate_str
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
self.cfg_path = os.path.join(res_path,
pretrained_models[tag]['cfg_path'])
self.ckpt_path = os.path.join(res_path,
pretrained_models[tag]['ckpt_path'] + ".pdparams")
logger.info(res_path)
logger.info(self.cfg_path)
logger.info(self.ckpt_path)
else:
self.cfg_path = os.path.abspath(cfg_path)
self.ckpt_path = os.path.abspath(ckpt_path + ".pdparams")
res_path = os.path.dirname(
os.path.dirname(os.path.abspath(self.cfg_path)))
#Init body.
self.config = CfgNode(new_allowed=True)
self.config.merge_from_file(self.cfg_path)
self.config.decoding.decoding_method = "attention_rescoring"
model_conf = self.config.model
logger.info(model_conf)
with UpdateConfig(model_conf):
if model_type == "ds2_online" or model_type == "ds2_offline":
from paddlespeech.s2t.io.collator import SpeechCollator
self.config.collator.vocab_filepath = os.path.join(
res_path, self.config.collator.vocab_filepath)
self.config.collator.mean_std_filepath = os.path.join(
res_path, self.config.collator.cmvn_path)
self.collate_fn_test = SpeechCollator.from_config(self.config)
text_feature = TextFeaturizer(
unit_type=self.config.collator.unit_type,
vocab_filepath=self.config.collator.vocab_filepath,
spm_model_prefix=self.config.collator.spm_model_prefix)
model_conf.input_dim = self.collate_fn_test.feature_size
model_conf.output_dim = text_feature.vocab_size
elif model_type == "conformer" or model_type == "transformer" or model_type == "wenetspeech":
self.config.collator.vocab_filepath = os.path.join(
res_path, self.config.collator.vocab_filepath)
text_feature = TextFeaturizer(
unit_type=self.config.collator.unit_type,
vocab_filepath=self.config.collator.vocab_filepath,
spm_model_prefix=self.config.collator.spm_model_prefix)
model_conf.input_dim = self.config.collator.feat_dim
model_conf.output_dim = text_feature.vocab_size
else:
raise Exception("wrong type")
self.config.freeze()
# Enter the path of model root
os.chdir(res_path)
model_class = dynamic_import(model_type, model_alias)
model = model_class.from_config(model_conf)
self.model = model
self.model.eval()
# load model
model_dict = paddle.load(self.ckpt_path)
self.model.set_state_dict(model_dict)
def preprocess(self, model_type: str, input: Union[str, os.PathLike]):
"""
Input preprocess and return paddle.Tensor stored in self.input.
Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet).
"""
audio_file = input
logger.info("Preprocess audio_file:" + audio_file)
# Get the object for feature extraction
if model_type == "ds2_online" or model_type == "ds2_offline":
audio, _ = self.collate_fn_test.process_utterance(
audio_file=audio_file, transcript=" ")
audio_len = audio.shape[0]
audio = paddle.to_tensor(audio, dtype='float32')
audio_len = paddle.to_tensor(audio_len)
audio = paddle.unsqueeze(audio, axis=0)
vocab_list = collate_fn_test.vocab_list
self._inputs["audio"] = audio
self._inputs["audio_len"] = audio_len
logger.info(f"audio feat shape: {audio.shape}")
elif model_type == "conformer" or model_type == "transformer" or model_type == "wenetspeech":
logger.info("get the preprocess conf")
preprocess_conf = os.path.join(
os.path.dirname(os.path.abspath(self.cfg_path)),
"preprocess.yaml")
logger.info(preprocess_conf)
preprocess_args = {"train": False}
preprocessing = Transformation(preprocess_conf)
logger.info("read the audio file")
audio, audio_sample_rate = soundfile.read(
audio_file, dtype="int16", always_2d=True)
if self.change_format:
if audio.shape[1] >= 2:
audio = audio.mean(axis=1, dtype=np.int16)
else:
audio = audio[:, 0]
# pcm16 -> pcm 32
audio = self._pcm16to32(audio)
audio = librosa.resample(audio, audio_sample_rate,
self.sample_rate)
audio_sample_rate = self.sample_rate
# pcm32 -> pcm 16
audio = self._pcm32to16(audio)
else:
audio = audio[:, 0]
logger.info(f"audio shape: {audio.shape}")
# fbank
audio = preprocessing(audio, **preprocess_args)
audio_len = paddle.to_tensor(audio.shape[0])
audio = paddle.to_tensor(audio, dtype='float32').unsqueeze(axis=0)
text_feature = TextFeaturizer(
unit_type=self.config.collator.unit_type,
vocab_filepath=self.config.collator.vocab_filepath,
spm_model_prefix=self.config.collator.spm_model_prefix)
self._inputs["audio"] = audio
self._inputs["audio_len"] = audio_len
logger.info(f"audio feat shape: {audio.shape}")
else:
raise Exception("wrong type")
@paddle.no_grad()
def infer(self, model_type: str):
"""
Model inference and result stored in self.output.
"""
text_feature = TextFeaturizer(
unit_type=self.config.collator.unit_type,
vocab_filepath=self.config.collator.vocab_filepath,
spm_model_prefix=self.config.collator.spm_model_prefix)
cfg = self.config.decoding
audio = self._inputs["audio"]
audio_len = self._inputs["audio_len"]
if model_type == "ds2_online" or model_type == "ds2_offline":
result_transcripts = self.model.decode(
audio,
audio_len,
text_feature.vocab_list,
decoding_method=cfg.decoding_method,
lang_model_path=cfg.lang_model_path,
beam_alpha=cfg.alpha,
beam_beta=cfg.beta,
beam_size=cfg.beam_size,
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch)
self._outputs["result"] = result_transcripts[0]
elif model_type == "conformer" or model_type == "transformer" or model_type == "wenetspeech":
result_transcripts = self.model.decode(
audio,
audio_len,
text_feature=text_feature,
decoding_method=cfg.decoding_method,
lang_model_path=cfg.lang_model_path,
beam_alpha=cfg.alpha,
beam_beta=cfg.beta,
beam_size=cfg.beam_size,
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch,
ctc_weight=cfg.ctc_weight,
decoding_chunk_size=cfg.decoding_chunk_size,
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
simulate_streaming=cfg.simulate_streaming)
self._outputs["result"] = result_transcripts[0][0]
else:
raise Exception("invalid model name")
def postprocess(self) -> Union[str, os.PathLike]:
"""
Output postprocess and return human-readable results such as texts and audio files.
"""
return self._outputs["result"]
def _pcm16to32(self, audio):
assert(audio.dtype == np.int16)
audio = audio.astype("float32")
bits = np.iinfo(np.int16).bits
audio = audio / (2**(bits - 1))
return audio
def _pcm32to16(self, audio):
assert(audio.dtype == np.float32)
bits = np.iinfo(np.int16).bits
audio = audio * (2**(bits - 1))
audio = np.round(audio).astype("int16")
return audio
def _check(self, audio_file: str, sample_rate: int):
self.sample_rate = sample_rate
if self.sample_rate != 16000 and self.sample_rate != 8000:
logger.error(
"please input --sr 8000 or --sr 16000"
)
raise Exception("invalid sample rate")
sys.exit(-1)
if not os.path.isfile(audio_file):
logger.error("Please input the right audio file path")
sys.exit(-1)
logger.info("checking the audio file format......")
try:
audio, audio_sample_rate = soundfile.read(
audio_file, dtype="int16", always_2d=True)
except Exception as e:
logger.error(str(e))
logger.error(
"can not open the audio file, please check the audio file format is 'wav'. \n \
you can try to use sox to change the file format.\n \
For example: \n \
sample rate: 16k \n \
sox input_audio.xx --rate 16k --bits 16 --channels 1 output_audio.wav \n \
sample rate: 8k \n \
sox input_audio.xx --rate 8k --bits 16 --channels 1 output_audio.wav \n \
")
sys.exit(-1)
logger.info("The sample rate is %d" % audio_sample_rate)
if audio_sample_rate != self.sample_rate:
logger.warning(
"The sample rate of the input file is not {}.\n \
The program will resample the wav file to {}.\n \
If the result does not meet your expectations\n \
Please input the 16k 16 bit 1 channel wav file. \
"
.format(self.sample_rate, self.sample_rate))
while (True):
logger.info(
"Whether to change the sample rate and the channel. Y: change the sample. N: exit the prgream."
)
content = input("Input(Y/N):")
if content.strip() == "Y" or content.strip(
) == "y" or content.strip() == "yes" or content.strip() == "Yes":
logger.info(
"change the sampele rate, channel to 16k and 1 channel")
break
elif content.strip() == "N" or content.strip(
) == "n" or content.strip() == "no" or content.strip() == "No":
logger.info("Exit the program")
exit(1)
else:
logger.warning("Not regular input, please input again")
self.change_format = True
else:
logger.info("The audio file format is right")
self.change_format = False
def execute(self, argv: List[str]) -> bool:
"""
Command line entry.
"""
parser_args = self.parser.parse_args(argv)
model = parser_args.model
lang = parser_args.lang
sample_rate = parser_args.sr
config = parser_args.config
ckpt_path = parser_args.ckpt_path
audio_file = parser_args.input
device = parser_args.device
try:
res = self(model, lang, sample_rate, config, ckpt_path,
audio_file, device)
logger.info('ASR Result: {}'.format(res))
return True
except Exception as e:
print(e)
return False
def __call__(self, model, lang, sample_rate, config, ckpt_path,
audio_file, device):
"""
Python API to call an executor.
"""
audio_file = os.path.abspath(audio_file)
self._check(audio_file, sample_rate)
paddle.set_device(device)
self._init_from_path(model, lang, sample_rate, config, ckpt_path)
self.preprocess(model, audio_file)
self.infer(model)
res = self.postprocess() # Retrieve result of asr.
return res

@ -23,9 +23,12 @@ def _CommandDict():
def _execute():
com = commands
for idx, _argv in enumerate(['paddlespeech'] + sys.argv[1:]):
idx = 0
for _argv in (['paddlespeech'] + sys.argv[1:]):
if _argv not in com:
break
idx += 1
com = com[_argv]
# The method 'execute' of a command instance returns 'True' for a success

@ -14,7 +14,8 @@
import os
from abc import ABC
from abc import abstractmethod
from typing import Optional
from typing import Any
from typing import List
from typing import Union
import paddle
@ -26,42 +27,76 @@ class BaseExecutor(ABC):
"""
def __init__(self):
self.input = None
self.output = None
self._inputs = dict()
self._outputs = dict()
@abstractmethod
def _get_default_cfg_path(self):
def _get_pretrained_path(self, tag: str) -> os.PathLike:
"""
Returns a default config file path of current task.
Download and returns pretrained resources path of current task.
Args:
tag (str): A tag of pretrained model.
Returns:
os.PathLike: The path on which resources of pretrained model locate.
"""
pass
@abstractmethod
def _init_from_cfg(self, cfg_path: Optional[os.PathLike]=None):
def _init_from_path(self, *args, **kwargs):
"""
Init model from a specific config file.
Init model and other resources from arguments. This method should be called by `__call__()`.
"""
pass
@abstractmethod
def preprocess(self, input: Union[str, os.PathLike]):
def preprocess(self, input: Any, *args, **kwargs):
"""
Input preprocess and return paddle.Tensor stored in self.input.
Input content can be a text(t2s), a file(s2t, cls) or a streaming(not supported yet).
Input preprocess and return paddle.Tensor stored in self._inputs.
Input content can be a text(tts), a file(asr, cls), a stream(not supported yet) or anything needed.
Args:
input (Any): Input text/file/stream or other content.
"""
pass
@paddle.no_grad()
@abstractmethod
def infer(self, device: str):
def infer(self, *args, **kwargs):
"""
Model inference and put results into self._outputs.
This method get input tensors from self._inputs, and write output tensors into self._outputs.
"""
pass
@abstractmethod
def postprocess(self, *args, **kwargs) -> Union[str, os.PathLike]:
"""
Model inference and result stored in self.output.
Output postprocess and return results.
This method get model output from self._outputs and convert it into human-readable results.
Returns:
Union[str, os.PathLike]: Human-readable results such as texts and audio files.
"""
pass
@abstractmethod
def execute(self, argv: List[str]) -> bool:
"""
Command line entry. This method can only be accessed by a command line such as `paddlespeech asr`.
Args:
argv (List[str]): Arguments from command line.
Returns:
int: Result of the command execution. `True` for a success and `False` for a failure.
"""
pass
@abstractmethod
def postprocess(self) -> Union[str, os.PathLike]:
def __call__(self, *arg, **kwargs):
"""
Output postprocess and return human-readable results such as texts and audio files.
Python API to call an executor.
"""
pass

@ -1,103 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from typing import List
from typing import Optional
from typing import Union
import paddle
from ..executor import BaseExecutor
from ..utils import cli_register
__all__ = ['S2TExecutor']
@cli_register(
name='paddlespeech.s2t', description='Speech to text infer command.')
class S2TExecutor(BaseExecutor):
def __init__(self):
super(S2TExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech.s2t', add_help=True)
self.parser.add_argument(
'--config',
type=str,
default=None,
help='Config of s2t task. Use deault config when it is None.')
self.parser.add_argument(
'--input', type=str, help='Audio file to recognize.')
self.parser.add_argument(
'--device',
type=str,
default='cpu',
help='Choose device to execute model inference.')
def _get_default_cfg_path(self):
"""
Returns a default config file path of current task.
"""
pass
def _init_from_cfg(self, cfg_path: Optional[os.PathLike]=None):
"""
Init model from a specific config file.
"""
pass
def preprocess(self, input: Union[str, os.PathLike]):
"""
Input preprocess and return paddle.Tensor stored in self.input.
Input content can be a text(t2s), a file(s2t, cls) or a streaming(not supported yet).
"""
pass
@paddle.no_grad()
def infer(self):
"""
Model inference and result stored in self.output.
"""
pass
def postprocess(self) -> Union[str, os.PathLike]:
"""
Output postprocess and return human-readable results such as texts and audio files.
"""
pass
def execute(self, argv: List[str]) -> bool:
parser_args = self.parser.parse_args(argv)
print(parser_args)
config = parser_args.config
audio_file = parser_args.input
device = parser_args.device
if config is not None:
assert os.path.isfile(config), 'Config file is not valid.'
else:
config = self._get_default_cfg_path()
try:
self._init_from_cfg(config)
self.preprocess(audio_file)
self.infer()
res = self.postprocess() # Retrieve result of s2t.
print(res)
return True
except Exception as e:
print(e)
return False

@ -11,10 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import logging
import os
from typing import Any
from typing import Dict
from typing import List
from paddle.framework import load
from paddle.utils import download
@ -26,6 +27,7 @@ __all__ = [
'get_command',
'download_and_decompress',
'load_state_dict_from_url',
'logger',
]
@ -53,29 +55,27 @@ def get_command(name: str) -> Any:
return com['_entry']
def decompress(file: str):
def decompress(file: str) -> os.PathLike:
"""
Extracts all files from a compressed file.
"""
assert os.path.isfile(file), "File: {} not exists.".format(file)
download._decompress(file)
return download._decompress(file)
def download_and_decompress(archives: List[Dict[str, str]], path: str):
def download_and_decompress(archive: Dict[str, str], path: str) -> os.PathLike:
"""
Download archieves and decompress to specific path.
"""
if not os.path.isdir(path):
os.makedirs(path)
for archive in archives:
assert 'url' in archive and 'md5' in archive, \
'Dictionary keys of "url" and "md5" are required in the archive, but got: {list(archieve.keys())}'
'Dictionary keys of "url" and "md5" are required in the archive, but got: {}'.format(list(archive.keys()))
return download.get_path_from_url(archive['url'], path, archive['md5'])
download.get_path_from_url(archive['url'], path, archive['md5'])
def load_state_dict_from_url(url: str, path: str, md5: str=None):
def load_state_dict_from_url(url: str, path: str, md5: str=None) -> os.PathLike:
"""
Download and load a state dict from url
"""
@ -84,3 +84,69 @@ def load_state_dict_from_url(url: str, path: str, md5: str=None):
download.get_path_from_url(url, path, md5)
return load(os.path.join(path, os.path.basename(url)))
def _get_user_home():
return os.path.expanduser('~')
def _get_paddlespcceh_home():
if 'PPSPEECH_HOME' in os.environ:
home_path = os.environ['PPSPEECH_HOME']
if os.path.exists(home_path):
if os.path.isdir(home_path):
return home_path
else:
raise RuntimeError(
'The environment variable PPSPEECH_HOME {} is not a directory.'.
format(home_path))
else:
return home_path
return os.path.join(_get_user_home(), '.paddlespeech')
def _get_sub_home(directory):
home = os.path.join(_get_paddlespcceh_home(), directory)
if not os.path.exists(home):
os.makedirs(home)
return home
PPSPEECH_HOME = _get_paddlespcceh_home()
MODEL_HOME = _get_sub_home('models')
class Logger(object):
def __init__(self, name: str=None):
name = 'PaddleSpeech' if not name else name
self.logger = logging.getLogger(name)
log_config = {
'DEBUG': 10,
'INFO': 20,
'TRAIN': 21,
'EVAL': 22,
'WARNING': 30,
'ERROR': 40,
'CRITICAL': 50
}
for key, level in log_config.items():
logging.addLevelName(level, key)
self.__dict__[key.lower()] = functools.partial(self.__call__, level)
self.format = logging.Formatter(
fmt='[%(asctime)-15s] [%(levelname)8s] [%(filename)s] [L%(lineno)d] - %(message)s'
)
self.handler = logging.StreamHandler()
self.handler.setFormatter(self.format)
self.logger.addHandler(self.handler)
self.logger.setLevel(logging.DEBUG)
self.logger.propagate = False
def __call__(self, log_level: str, msg: str):
self.logger.log(log_level, msg)
logger = Logger()

Loading…
Cancel
Save