|
|
|
@ -26,6 +26,8 @@ parser.add_argument(
|
|
|
|
|
"--rnn_layer_size", default=256, type=int, help="RNN layer cell number.")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--use_gpu", default=True, type=bool, help="Use gpu or not.")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--use_sortagrad", default=False, type=bool, help="Use sortagrad or not.")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--trainer_count", default=8, type=int, help="Trainer number.")
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
@ -56,12 +58,9 @@ def train():
|
|
|
|
|
# create parameters and optimizer
|
|
|
|
|
parameters = paddle.parameters.create(cost)
|
|
|
|
|
optimizer = paddle.optimizer.Adam(
|
|
|
|
|
learning_rate=5e-5,
|
|
|
|
|
gradient_clipping_threshold=5,
|
|
|
|
|
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
|
|
|
|
|
learning_rate=5e-4, gradient_clipping_threshold=400)
|
|
|
|
|
trainer = paddle.trainer.SGD(
|
|
|
|
|
cost=cost, parameters=parameters, update_equation=optimizer)
|
|
|
|
|
|
|
|
|
|
# create data readers
|
|
|
|
|
feeding = {
|
|
|
|
|
"audio_spectrogram": 0,
|
|
|
|
@ -70,13 +69,13 @@ def train():
|
|
|
|
|
train_batch_reader_with_sortagrad = audio_data_utils.padding_batch_reader(
|
|
|
|
|
paddle.batch(
|
|
|
|
|
audio_data_utils.reader_creator(
|
|
|
|
|
manifest_path="./libri.manifest.dev", sort_by_duration=True),
|
|
|
|
|
manifest_path="./libri.manifest.train", sort_by_duration=True),
|
|
|
|
|
batch_size=args.batch_size // args.trainer),
|
|
|
|
|
padding=[-1, 1000])
|
|
|
|
|
train_batch_reader_without_sortagrad = audio_data_utils.padding_batch_reader(
|
|
|
|
|
paddle.batch(
|
|
|
|
|
audio_data_utils.reader_creator(
|
|
|
|
|
manifest_path="./libri.manifest.dev",
|
|
|
|
|
manifest_path="./libri.manifest.train",
|
|
|
|
|
sort_by_duration=False,
|
|
|
|
|
shuffle=True),
|
|
|
|
|
batch_size=args.batch_size // args.trainer),
|
|
|
|
@ -84,7 +83,7 @@ def train():
|
|
|
|
|
test_batch_reader = audio_data_utils.padding_batch_reader(
|
|
|
|
|
paddle.batch(
|
|
|
|
|
audio_data_utils.reader_creator(
|
|
|
|
|
manifest_path="./libri.manifest.test", sort_by_duration=False),
|
|
|
|
|
manifest_path="./libri.manifest.dev", sort_by_duration=False),
|
|
|
|
|
batch_size=args.batch_size // args.trainer),
|
|
|
|
|
padding=[-1, 1000])
|
|
|
|
|
|
|
|
|
@ -92,27 +91,31 @@ def train():
|
|
|
|
|
def event_handler(event):
|
|
|
|
|
if isinstance(event, paddle.event.EndIteration):
|
|
|
|
|
if event.batch_id % 10 == 0:
|
|
|
|
|
print "Pass: %d, Batch: %d, TrainCost: %f, %s" % (
|
|
|
|
|
event.pass_id, event.batch_id, event.cost, event.metrics)
|
|
|
|
|
print "/nPass: %d, Batch: %d, TrainCost: %f" % (
|
|
|
|
|
event.pass_id, event.batch_id, event.cost)
|
|
|
|
|
else:
|
|
|
|
|
sys.stdout.write('.')
|
|
|
|
|
sys.stdout.flush()
|
|
|
|
|
if isinstance(event, paddle.event.EndPass):
|
|
|
|
|
result = trainer.test(reader=test_batch_reader, feeding=feeding)
|
|
|
|
|
print "Pass: %d, TestMetric: %s" % (event.pass_id, result.metrics)
|
|
|
|
|
print "Pass: %d, TestCost: %s" % (event.pass_id, result.cost)
|
|
|
|
|
with gzip.open("params.tar.gz", 'w') as f:
|
|
|
|
|
parameters.to_tar(f)
|
|
|
|
|
|
|
|
|
|
# run train
|
|
|
|
|
trainer.train(
|
|
|
|
|
reader=train_batch_reader_with_sortagrad,
|
|
|
|
|
event_handler=event_handler,
|
|
|
|
|
num_passes=1,
|
|
|
|
|
feeding=feeding)
|
|
|
|
|
# first pass with sortagrad
|
|
|
|
|
if args.use_sortagrad:
|
|
|
|
|
trainer.train(
|
|
|
|
|
reader=train_batch_reader_with_sortagrad,
|
|
|
|
|
event_handler=event_handler,
|
|
|
|
|
num_passes=1,
|
|
|
|
|
feeding=feeding)
|
|
|
|
|
args.num_passes -= 1
|
|
|
|
|
# other passes without sortagrad
|
|
|
|
|
trainer.train(
|
|
|
|
|
reader=train_batch_reader_without_sortagrad,
|
|
|
|
|
event_handler=event_handler,
|
|
|
|
|
num_passes=self.num_passes - 1,
|
|
|
|
|
num_passes=args.num_passes,
|
|
|
|
|
feeding=feeding)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|