add speaker verification using cosine score, test=doc

pull/1523/head
xiongxinlei 3 years ago
parent 1f74af110b
commit 97ec01260b

@ -0,0 +1,238 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import ast
import os
import numpy as np
import paddle
from paddle.io import BatchSampler
from paddle.io import DataLoader
import paddle.nn.functional as F
from paddlespeech.vector.training.metrics import compute_eer
from paddleaudio.datasets.voxceleb import VoxCeleb1
from paddlespeech.vector.models.ecapa_tdnn import EcapaTdnn
from paddlespeech.vector.training.sid_model import SpeakerIdetification
from tqdm import tqdm
def pad_right_2d(x, target_length, axis=-1, mode='constant', **kwargs):
x = np.asarray(x)
assert len(
x.shape) == 2, f'Only 2D arrays supported, but got shape: {x.shape}'
w = target_length - x.shape[axis]
assert w >= 0, f'Target length {target_length} is less than origin length {x.shape[axis]}'
if axis == 0:
pad_width = [[0, w], [0, 0]]
else:
pad_width = [[0, 0], [0, w]]
return np.pad(x, pad_width, mode=mode, **kwargs)
def feature_normalize(batch, mean_norm: bool = True, std_norm: bool = True):
ids = [item['id'] for item in batch]
lengths = np.asarray([item['feat'].shape[1] for item in batch])
feats = list(
map(lambda x: pad_right_2d(x, lengths.max()),
[item['feat'] for item in batch]))
feats = np.stack(feats)
# Features normalization if needed
for i in range(len(feats)):
feat = feats[i][:, :lengths[i]] # Excluding pad values.
mean = feat.mean(axis=-1, keepdims=True) if mean_norm else 0
std = feat.std(axis=-1, keepdims=True) if std_norm else 1
feats[i][:, :lengths[i]] = (feat - mean) / std
assert feats[i][:, lengths[i]:].sum(
) == 0 # Padding valus should all be 0.
# Converts into ratios.
lengths = (lengths / lengths.max()).astype(np.float32)
return {'ids': ids, 'feats': feats, 'lengths': lengths}
def main(args):
# stage0: set the training device, cpu or gpu
paddle.set_device(args.device)
# stage1: build the dnn backbone model network
##"channels": [1024, 1024, 1024, 1024, 3072],
model_conf = {
"input_size": 80,
"channels": [512, 512, 512, 512, 1536],
"kernel_sizes": [5, 3, 3, 3, 1],
"dilations": [1, 2, 3, 4, 1],
"attention_channels": 128,
"lin_neurons": 192,
}
ecapa_tdnn = EcapaTdnn(**model_conf)
# stage2: build the speaker verification eval instance with backbone model
model = SpeakerIdetification(
backbone=ecapa_tdnn, num_class=VoxCeleb1.num_speakers)
# stage3: load the pre-trained model
args.load_checkpoint = os.path.abspath(
os.path.expanduser(args.load_checkpoint))
# load model checkpoint to sid model
state_dict = paddle.load(
os.path.join(args.load_checkpoint, 'model.pdparams'))
model.set_state_dict(state_dict)
print(f'Checkpoint loaded from {args.load_checkpoint}')
# stage4: construct the enroll and test dataloader
enrol_ds = VoxCeleb1(subset='enrol',
feat_type='melspectrogram',
random_chunk=False,
n_mels=80,
window_size=400,
hop_length=160)
enrol_sampler = BatchSampler(
enrol_ds,
batch_size=args.batch_size,
shuffle=True) # Shuffle to make embedding normalization more robust.
enrol_loader = DataLoader(enrol_ds,
batch_sampler=enrol_sampler,
collate_fn=lambda x: feature_normalize(
x, mean_norm=True, std_norm=False),
num_workers=args.num_workers,
return_list=True,)
test_ds = VoxCeleb1(subset='test',
feat_type='melspectrogram',
random_chunk=False,
n_mels=80,
window_size=400,
hop_length=160)
test_sampler = BatchSampler(test_ds,
batch_size=args.batch_size,
shuffle=True)
test_loader = DataLoader(test_ds,
batch_sampler=test_sampler,
collate_fn=lambda x: feature_normalize(
x, mean_norm=True, std_norm=False),
num_workers=args.num_workers,
return_list=True,)
# stage6: we must set the model to eval mode
model.eval()
# stage7: global embedding norm to imporve the performance
if args.global_embedding_norm:
embedding_mean = None
embedding_std = None
mean_norm = args.embedding_mean_norm
std_norm = args.embedding_std_norm
batch_count = 0
# stage8: Compute embeddings of audios in enrol and test dataset from model.
id2embedding = {}
# Run multi times to make embedding normalization more stable.
for i in range(2):
for dl in [enrol_loader, test_loader]:
print(
f'Loop {[i+1]}: Computing embeddings on {dl.dataset.subset} dataset'
)
with paddle.no_grad():
for batch_idx, batch in enumerate(tqdm(dl)):
# stage 8-1: extrac the audio embedding
ids, feats, lengths = batch['ids'], batch['feats'], batch[
'lengths']
embeddings = model.backbone(feats, lengths).squeeze(
-1).numpy() # (N, emb_size, 1) -> (N, emb_size)
# Global embedding normalization.
if args.global_embedding_norm:
batch_count += 1
mean = embeddings.mean(axis=0) if mean_norm else 0
std = embeddings.std(axis=0) if std_norm else 1
# Update global mean and std.
if embedding_mean is None and embedding_std is None:
embedding_mean, embedding_std = mean, std
else:
weight = 1 / batch_count # Weight decay by batches.
embedding_mean = (
1 - weight) * embedding_mean + weight * mean
embedding_std = (
1 - weight) * embedding_std + weight * std
# Apply global embedding normalization.
embeddings = (embeddings - embedding_mean) / embedding_std
# Update embedding dict.
id2embedding.update(dict(zip(ids, embeddings)))
# stage 9: Compute cosine scores.
labels = []
enrol_ids = []
test_ids = []
with open(VoxCeleb1.veri_test_file, 'r') as f:
for line in f.readlines():
label, enrol_id, test_id = line.strip().split(' ')
labels.append(int(label))
enrol_ids.append(enrol_id.split('.')[0].replace('/', '-'))
test_ids.append(test_id.split('.')[0].replace('/', '-'))
cos_sim_func = paddle.nn.CosineSimilarity(axis=1)
enrol_embeddings, test_embeddings = map(lambda ids: paddle.to_tensor(
np.asarray([id2embedding[id] for id in ids], dtype='float32')),
[enrol_ids, test_ids
]) # (N, emb_size)
scores = cos_sim_func(enrol_embeddings, test_embeddings)
EER, threshold = compute_eer(np.asarray(labels), scores.numpy())
print(
f'EER of verification test: {EER*100:.4f}%, score threshold: {threshold:.5f}'
)
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument('--device',
choices=['cpu', 'gpu'],
default="gpu",
help="Select which device to train model, defaults to gpu.")
parser.add_argument("--batch-size",
type=int,
default=16,
help="Total examples' number in batch for training.")
parser.add_argument("--num-workers",
type=int,
default=0,
help="Number of workers in dataloader.")
parser.add_argument("--load-checkpoint",
type=str,
default='',
help="Directory to load model checkpoint to contiune trainning.")
parser.add_argument("--global-embedding-norm",
type=bool,
default=True,
help="Apply global normalization on speaker embeddings.")
parser.add_argument("--embedding-mean-norm",
type=bool,
default=True,
help="Apply mean normalization on speaker embeddings.")
parser.add_argument("--embedding-std-norm",
type=bool,
default=False,
help="Apply std normalization on speaker embeddings.")
args = parser.parse_args()
# yapf: enable
main(args)

@ -2,9 +2,33 @@
. ./path.sh . ./path.sh
set -e set -e
dir=./data/ #######################################################################
mkdir -p ${dir} # stage 1: train the speaker identification model
# stage 2: test speaker identification
# stage 3: extract the training embeding to train the LDA and PLDA
######################################################################
# you can set the variable PPAUDIO_HOME to specifiy the downloaded the vox1 and vox2 dataset # you can set the variable PPAUDIO_HOME to specifiy the downloaded the vox1 and vox2 dataset
# default the dataset is the ~/.paddleaudio/
# export PPAUDIO_HOME=
stage=2
dir=data/ # data directory
exp_dir=exp/ecapa-tdnn/ # experiment directory
mkdir -p ${dir}
if [ $stage -le 1 ]; then
# stage 1: train the speaker identification model
python3 \
-m paddle.distributed.launch --gpus=0,1,2,3 \
local/train.py --device "gpu" --checkpoint-dir ${exp_dir} \
--save-freq 10 --data-dir ${dir} --batch-size 256 --epochs 60
fi
if [ $stage -le 2 ]; then
# stage 1: train the speaker identification model
python3 \ python3 \
local/train.py \ local/speaker_verification_cosine.py \
--data-dir ${dir} --load-checkpoint ${exp_dir}/epoch_40/
fi

Loading…
Cancel
Save