训练了transformer声源模型,可与其他声码器匹配

pull/2449/head
吕志轩 3 years ago
parent b058a2d3fe
commit 923ae61e7e

@ -0,0 +1,62 @@
#!/bin/bash
stage=1
stop_stage=100
config_path=$1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# get durations from MFA's result
echo "Generate durations.txt from MFA results ..."
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
--inputdir=./baker_alignment_tone \
--output=durations.txt \
--config=${config_path}
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# extract features
echo "Extract features ..."
python3 ${BIN_DIR}/preprocess_new.py \
--dataset=baker\
--rootdir=~/datasets/BZNSYP/ \
--dumpdir=dump \
--dur-file=durations.txt
--config-path=${config_path} \
--num-cpu=8 \
--cut-sil=True
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="speech"
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# normalize and covert phone to id, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/train/raw/metadata.jsonl \
--dumpdir=dump/train/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/dev/raw/metadata.jsonl \
--dumpdir=dump/dev/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/test/raw/metadata.jsonl \
--dumpdir=dump/test/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
fi

@ -0,0 +1,95 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize.py \
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# for more GAN Vocoders
# multi band melgan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
--voc=mb_melgan_csmsc \
--voc_config=mb_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=mb_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1000000.pdz\
--voc_stat=mb_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# style melgan
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
--voc=style_melgan_csmsc \
--voc_config=style_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=style_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1500000.pdz \
--voc_stat=style_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# hifigan
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "in hifigan syn"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
--voc=hifigan_csmsc \
--voc_config=hifigan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=hifigan_csmsc_ckpt_0.1.1/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi

@ -0,0 +1,109 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
#--inference_dir=${train_output_path}/inference
fi
# for more GAN Vocoders
# multi band melgan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
--voc=mb_melgan_csmsc \
--voc_config=mb_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=mb_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1000000.pdz\
--voc_stat=mb_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
#--inference_dir=${train_output_path}/inference
fi
# the pretrained models haven't release now
# style melgan
# style melgan's Dygraph to Static Graph is not ready now
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
--voc=style_melgan_csmsc \
--voc_config=style_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=style_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1500000.pdz \
--voc_stat=style_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt
# --inference_dir=${train_output_path}/inference
fi
# hifigan
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "in hifigan syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
--voc=hifigan_csmsc \
--voc_config=hifigan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=hifigan_csmsc_ckpt_0.1.1/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
#--inference_dir=${train_output_path}/inference
fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
#--inference_dir=${train_output_path}/inference
fi

@ -0,0 +1,12 @@
#!/bin/bash
config_path=$1
train_output_path=$2
python3 ${BIN_DIR}/train.py \
--train-metadata=dump/train/norm/metadata.jsonl \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=2 \
--phones-dict=dump/phone_id_map.txt
Loading…
Cancel
Save