Merge pull request #55 from kuke/update_benchmark

Retune hyper-parameters and update benchmark results for English models due to #50
pull/66/head
Yibing Liu 7 years ago committed by GitHub
commit 907898a48c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -505,13 +505,13 @@ Language Model | Training Data | Token-based | Size | Descriptions
Test Set | LibriSpeech Model | BaiduEN8K Model Test Set | LibriSpeech Model | BaiduEN8K Model
:--------------------- | ---------------: | -------------------: :--------------------- | ---------------: | -------------------:
LibriSpeech Test-Clean | 7.73 | 6.63 LibriSpeech Test-Clean | 6.85 | 5.73
LibriSpeech Test-Other | 23.15 | 16.59 LibriSpeech Test-Other | 21.18 | 14.47
VoxForge American-Canadian | 12.30 |   7.46 VoxForge American-Canadian | 12.12 |   7.37
VoxForge Commonwealth | 20.03 | 16.23 VoxForge Commonwealth | 19.82 | 15.58
VoxForge European | 30.31 | 20.47 VoxForge European | 30.15 | 19.44
VoxForge Indian | 55.47 | 28.15 VoxForge Indian | 53.73 | 26.15
Baidu Internal Testset  |   44.71 |   8.92 Baidu Internal Testset  |   40.75 |   8.82
For reproducing benchmark results on VoxForge data, we provide a script to download data and generate VoxForge dialect manifest files. Please go to ```data/voxforge``` and execute ```sh run_data.sh``` to get VoxForge dialect manifest files. Notice that VoxForge data may keep updating and the generated manifest files may have difference from those we evaluated on. For reproducing benchmark results on VoxForge data, we provide a script to download data and generate VoxForge dialect manifest files. Please go to ```data/voxforge``` and execute ```sh run_data.sh``` to get VoxForge dialect manifest files. Notice that VoxForge data may keep updating and the generated manifest files may have difference from those we evaluated on.

@ -21,8 +21,8 @@ python -u infer.py \
--num_conv_layers=2 \ --num_conv_layers=2 \
--num_rnn_layers=3 \ --num_rnn_layers=3 \
--rnn_layer_size=2048 \ --rnn_layer_size=2048 \
--alpha=2.15 \ --alpha=2.5 \
--beta=0.35 \ --beta=0.3 \
--cutoff_prob=1.0 \ --cutoff_prob=1.0 \
--cutoff_top_n=40 \ --cutoff_top_n=40 \
--use_gru=False \ --use_gru=False \

@ -30,8 +30,8 @@ python -u infer.py \
--num_conv_layers=2 \ --num_conv_layers=2 \
--num_rnn_layers=3 \ --num_rnn_layers=3 \
--rnn_layer_size=2048 \ --rnn_layer_size=2048 \
--alpha=2.15 \ --alpha=2.5 \
--beta=0.35 \ --beta=0.3 \
--cutoff_prob=1.0 \ --cutoff_prob=1.0 \
--cutoff_top_n=40 \ --cutoff_top_n=40 \
--use_gru=False \ --use_gru=False \

@ -22,8 +22,8 @@ python -u test.py \
--num_conv_layers=2 \ --num_conv_layers=2 \
--num_rnn_layers=3 \ --num_rnn_layers=3 \
--rnn_layer_size=2048 \ --rnn_layer_size=2048 \
--alpha=2.15 \ --alpha=2.5 \
--beta=0.35 \ --beta=0.3 \
--cutoff_prob=1.0 \ --cutoff_prob=1.0 \
--cutoff_top_n=40 \ --cutoff_top_n=40 \
--use_gru=False \ --use_gru=False \

@ -31,8 +31,8 @@ python -u test.py \
--num_conv_layers=2 \ --num_conv_layers=2 \
--num_rnn_layers=3 \ --num_rnn_layers=3 \
--rnn_layer_size=2048 \ --rnn_layer_size=2048 \
--alpha=2.15 \ --alpha=2.5 \
--beta=0.35 \ --beta=0.3 \
--cutoff_prob=1.0 \ --cutoff_prob=1.0 \
--cutoff_top_n=40 \ --cutoff_top_n=40 \
--use_gru=False \ --use_gru=False \

@ -21,8 +21,8 @@ python -u infer.py \
--num_conv_layers=2 \ --num_conv_layers=2 \
--num_rnn_layers=3 \ --num_rnn_layers=3 \
--rnn_layer_size=2048 \ --rnn_layer_size=2048 \
--alpha=2.15 \ --alpha=2.5 \
--beta=0.35 \ --beta=0.3 \
--cutoff_prob=1.0 \ --cutoff_prob=1.0 \
--cutoff_top_n=40 \ --cutoff_top_n=40 \
--use_gru=False \ --use_gru=False \

@ -30,8 +30,8 @@ python -u infer.py \
--num_conv_layers=2 \ --num_conv_layers=2 \
--num_rnn_layers=3 \ --num_rnn_layers=3 \
--rnn_layer_size=2048 \ --rnn_layer_size=2048 \
--alpha=2.15 \ --alpha=2.5 \
--beta=0.35 \ --beta=0.3 \
--cutoff_prob=1.0 \ --cutoff_prob=1.0 \
--cutoff_top_n=40 \ --cutoff_top_n=40 \
--use_gru=False \ --use_gru=False \

@ -22,8 +22,8 @@ python -u test.py \
--num_conv_layers=2 \ --num_conv_layers=2 \
--num_rnn_layers=3 \ --num_rnn_layers=3 \
--rnn_layer_size=2048 \ --rnn_layer_size=2048 \
--alpha=2.15 \ --alpha=2.5 \
--beta=0.35 \ --beta=0.3 \
--cutoff_prob=1.0 \ --cutoff_prob=1.0 \
--cutoff_top_n=40 \ --cutoff_top_n=40 \
--use_gru=False \ --use_gru=False \

@ -31,8 +31,8 @@ python -u test.py \
--num_conv_layers=2 \ --num_conv_layers=2 \
--num_rnn_layers=3 \ --num_rnn_layers=3 \
--rnn_layer_size=2048 \ --rnn_layer_size=2048 \
--alpha=2.15 \ --alpha=2.5 \
--beta=0.35 \ --beta=0.3 \
--cutoff_prob=1.0 \ --cutoff_prob=1.0 \
--cutoff_top_n=40 \ --cutoff_top_n=40 \
--use_gru=False \ --use_gru=False \

Loading…
Cancel
Save