|
|
|
@ -34,9 +34,8 @@ from deepspeech.training.trainer import Trainer
|
|
|
|
|
from deepspeech.utils import error_rate
|
|
|
|
|
from deepspeech.utils import layer_tools
|
|
|
|
|
from deepspeech.utils import mp_tools
|
|
|
|
|
from deepspeech.utils.log import Log
|
|
|
|
|
from deepspeech.utils.log import Autolog
|
|
|
|
|
|
|
|
|
|
from deepspeech.utils.log import Log
|
|
|
|
|
|
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
|
@ -226,7 +225,6 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
|
|
|
|
|
|
|
|
|
|
def __init__(self, config, args):
|
|
|
|
|
super().__init__(config, args)
|
|
|
|
|
self.autolog = Autolog(batch_size = config.decoding.batch_size, model_name = "deepspeech2", model_precision = "fp32").getlog()
|
|
|
|
|
|
|
|
|
|
def ordid2token(self, texts, texts_len):
|
|
|
|
|
""" ord() id to chr() chr """
|
|
|
|
@ -294,6 +292,10 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
|
def test(self):
|
|
|
|
|
logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")
|
|
|
|
|
self.autolog = Autolog(
|
|
|
|
|
batch_size=self.config.decoding.batch_size,
|
|
|
|
|
model_name="deepspeech2",
|
|
|
|
|
model_precision="fp32").getlog()
|
|
|
|
|
self.model.eval()
|
|
|
|
|
cfg = self.config
|
|
|
|
|
error_rate_type = None
|
|
|
|
|