@ -151,44 +151,22 @@ avg.sh best exp/conformer/checkpoints 20
CUDA_VISIBLE_DEVICES= ./local/test.sh conf/conformer.yaml exp/conformer/checkpoints/avg_20
```
## Pretrained Model
You can get the pretrained transformer or conformer using the scripts below:
```bash
# Conformer:
wget https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/conformer.model.tar.gz
# Transformer:
wget https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/transformer.model.tar.gz
```
You can get the pretrained transformer or conformer from [this ](../../../docs/source/released_model.md ).
using the `tar` scripts to unpack the model and then you can use the script to test the model.
For example:
```bash
wget https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/conformer.model.tar.gz
tar xzvf tr an sformer.model.tar.gz
wget https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_conformer_librispeech_ckpt_0.1.1.model.tar.gz
tar xzvf asr1_con former_librispeech_ckpt_0.1.1 .model.tar.gz
source path.sh
# If you have process the data and get the manifest file, you can skip the following 2 steps
bash local/data.sh --stage -1 --stop_stage -1
bash local/data.sh --stage 2 --stop_stage 2
CUDA_VISIBLE_DEVICES= ./local/test.sh conf/conformer.yaml exp/conformer/checkpoints/avg_20
```
The performance of the released models are shown below:
## Conformer
train: Epoch 70, 4 V100-32G, best avg: 20
| Model | Params | Config | Augmentation | Test set | Decode method | Loss | WER |
| --------- | ------- | ------------------- | ------------ | ---------- | ---------------------- | ----------------- | -------- |
| conformer | 47.63 M | conf/conformer.yaml | spec_aug | test-clean | attention | 6.433612394332886 | 0.039771 |
| conformer | 47.63 M | conf/conformer.yaml | spec_aug | test-clean | ctc_greedy_search | 6.433612394332886 | 0.040342 |
| conformer | 47.63 M | conf/conformer.yaml | spec_aug | test-clean | ctc_prefix_beam_search | 6.433612394332886 | 0.040342 |
| conformer | 47.63 M | conf/conformer.yaml | spec_aug | test-clean | attention_rescoring | 6.433612394332886 | 0.033761 |
## Transformer
train: Epoch 120, 4 V100-32G, 27 Day, best avg: 10
The performance of the released models are shown in (here)[./RESULTS.md].
| Model | Params | Config | Augmentation | Test set | Decode method | Loss | WER |
| ----------- | ------- | --------------------- | ------------ | ---------- | ---------------------- | ----------------- | -------- |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention | 6.382194232940674 | 0.049661 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_greedy_search | 6.382194232940674 | 0.049566 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_prefix_beam_search | 6.382194232940674 | 0.049585 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention_rescoring | 6.382194232940674 | 0.038135 |
## Stage 4: CTC Alignment
If you want to get the alignment between the audio and the text, you can use the ctc alignment. The code of this stage is shown below:
```bash
@ -227,8 +205,8 @@ In some situations, you want to use the trained model to do the inference for th
```
you can train the model by yourself using ```bash run.sh --stage 0 --stop_stage 3```, or you can download the pretrained model through the script below:
```bash
wget https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/conformer.model.tar.gz
tar xzvf conformer.model.tar.gz
wget https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_ conformer_librispeech_ckpt_0.1.1 .model.tar.gz
tar xzvf asr1_ conformer_librispeech_ckpt_0.1.1 .model.tar.gz
```
You can download the audio demo:
```bash