more utils to support kaldi/espnet data preocess

pull/931/head
Hui Zhang 3 years ago
parent ed19e243de
commit 871fc5b70d

1
.gitignore vendored

@ -24,5 +24,6 @@ tools/montreal-forced-aligner/
tools/Montreal-Forced-Aligner/
tools/sctk
tools/sctk-20159b5/
tools/kaldi
*output/

@ -318,6 +318,18 @@ class CTCPrefixScore():
r[0, 0] = xs[0]
r[0, 1] = self.logzero
else:
# Although the code does not exactly follow Algorithm 2,
# we don't have to change it because we can assume
# r_t(h)=0 for t < |h| in CTC forward computation
# (Note: we assume here that index t starts with 0).
# The purpose of this difference is to reduce the number of for-loops.
# https://github.com/espnet/espnet/pull/3655
# where we start to accumulate r_t(h) from t=|h|
# and iterate r_t(h) = (r_{t-1}(h) + ...) to T-1,
# avoiding accumulating zeros for t=1~|h|-1.
# Thus, we need to set r_{|h|-1}(h) = 0,
# i.e., r[output_length-1] = logzero, for initialization.
# This is just for reducing the computation.
r[output_length - 1] = self.logzero
# prepare forward probabilities for the last label

@ -13,6 +13,7 @@
# limitations under the License.
"""Contains the data augmentation pipeline."""
import json
import os
from collections.abc import Sequence
from inspect import signature
from pprint import pformat
@ -90,9 +91,8 @@ class AugmentationPipeline():
effect.
Params:
augmentation_config(str): Augmentation configuration in json string.
preprocess_conf(str): Augmentation configuration in `json file` or `json string`.
random_seed(int): Random seed.
train(bool): whether is train mode.
Raises:
ValueError: If the augmentation json config is in incorrect format".
@ -100,11 +100,18 @@ class AugmentationPipeline():
SPEC_TYPES = {'specaug'}
def __init__(self, augmentation_config: str, random_seed: int=0):
def __init__(self, preprocess_conf: str, random_seed: int=0):
self._rng = np.random.RandomState(random_seed)
self.conf = {'mode': 'sequential', 'process': []}
if augmentation_config:
process = json.loads(augmentation_config)
if preprocess_conf:
if os.path.isfile(preprocess_conf):
# json file
with open(preprocess_conf, 'r') as fin:
json_string = fin.read()
else:
# json string
json_string = preprocess_conf
process = json.loads(json_string)
self.conf['process'] += process
self._augmentors, self._rates = self._parse_pipeline_from('all')

@ -105,7 +105,7 @@ class SpeechCollatorBase():
self._local_data = TarLocalData(tar2info={}, tar2object={})
self.augmentation = AugmentationPipeline(
augmentation_config=aug_file.read(), random_seed=random_seed)
preprocess_conf=aug_file.read(), random_seed=random_seed)
self._normalizer = FeatureNormalizer(
mean_std_filepath) if mean_std_filepath else None

@ -17,14 +17,13 @@ import kaldiio
import numpy as np
import soundfile
from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline
from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline as Transformation
from deepspeech.utils.log import Log
__all__ = ["LoadInputsAndTargets"]
logger = Log(__name__).getlog()
class LoadInputsAndTargets():
"""Create a mini-batch from a list of dicts
@ -66,8 +65,7 @@ class LoadInputsAndTargets():
raise ValueError("Only asr are allowed: mode={}".format(mode))
if preprocess_conf is not None:
with open(preprocess_conf, 'r') as fin:
self.preprocessing = AugmentationPipeline(fin.read())
self.preprocessing = Transformation(preprocess_conf)
logger.warning(
"[Experimental feature] Some preprocessing will be done "
"for the mini-batch creation using {}".format(

@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Any
from typing import List
from typing import Tuple
@ -26,6 +25,9 @@ from deepspeech.models.lm_interface import LMInterface
from deepspeech.modules.encoder import TransformerEncoder
from deepspeech.modules.mask import subsequent_mask
from deepspeech.utils.log import Log
logger = Log(__name__).getlog()
class TransformerLM(nn.Layer, LMInterface, BatchScorerInterface):
def __init__(
@ -74,10 +76,10 @@ class TransformerLM(nn.Layer, LMInterface, BatchScorerInterface):
self.decoder = nn.Linear(att_unit, n_vocab)
logging.info("Tie weights set to {}".format(tie_weights))
logging.info("Dropout set to {}".format(dropout_rate))
logging.info("Emb Dropout set to {}".format(emb_dropout_rate))
logging.info("Att Dropout set to {}".format(att_dropout_rate))
logger.info("Tie weights set to {}".format(tie_weights))
logger.info("Dropout set to {}".format(dropout_rate))
logger.info("Emb Dropout set to {}".format(emb_dropout_rate))
logger.info("Att Dropout set to {}".format(att_dropout_rate))
if tie_weights:
assert (

@ -23,17 +23,39 @@ from deepspeech.utils.log import Log
logger = Log(__name__).getlog()
__all__ = [
"NoPositionalEncoding", "PositionalEncoding", "RelPositionalEncoding"
"PositionalEncodingInterface", "NoPositionalEncoding", "PositionalEncoding", "RelPositionalEncoding"
]
class PositionalEncodingInterface:
class NoPositionalEncoding(nn.Layer):
def forward(self, x:paddle.Tensor, offset: int=0) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Compute positional encoding.
Args:
x (paddle.Tensor): Input tensor (batch, time, `*`).
Returns:
paddle.Tensor: Encoded tensor (batch, time, `*`).
paddle.Tensor: Positional embedding tensor (1, time, `*`).
"""
raise NotImplementedError("forward method is not implemented")
def position_encoding(self, offset:int, size:int) -> paddle.Tensor:
""" For getting encoding in a streaming fashion
Args:
offset (int): start offset
size (int): requried size of position encoding
Returns:
paddle.Tensor: Corresponding position encoding
"""
raise NotImplementedError("position_encoding method is not implemented")
class NoPositionalEncoding(nn.Layer, PositionalEncodingInterface):
def __init__(self,
d_model: int,
dropout_rate: float,
max_len: int=5000,
reverse: bool=False):
super().__init__()
nn.Layer.__init__(self)
def forward(self, x: paddle.Tensor,
offset: int=0) -> Tuple[paddle.Tensor, paddle.Tensor]:
@ -43,7 +65,7 @@ class NoPositionalEncoding(nn.Layer):
return None
class PositionalEncoding(nn.Layer):
class PositionalEncoding(nn.Layer, PositionalEncodingInterface):
def __init__(self,
d_model: int,
dropout_rate: float,
@ -58,7 +80,7 @@ class PositionalEncoding(nn.Layer):
max_len (int, optional): maximum input length. Defaults to 5000.
reverse (bool, optional): Not used. Defaults to False.
"""
super().__init__()
nn.Layer.__init__(self)
self.d_model = d_model
self.max_len = max_len
self.xscale = paddle.to_tensor(math.sqrt(self.d_model))
@ -103,7 +125,7 @@ class PositionalEncoding(nn.Layer):
offset (int): start offset
size (int): requried size of position encoding
Returns:
paddle.Tensor: Corresponding encoding
paddle.Tensor: Corresponding position encoding
"""
assert offset + size < self.max_len
return self.dropout(self.pe[:, offset:offset + size])

@ -0,0 +1,149 @@
import io
import h5py
import kaldiio
import numpy as np
class CMVN():
"Apply Global/Spk CMVN/iverserCMVN."
def __init__(
self,
stats,
norm_means=True,
norm_vars=False,
filetype="mat",
utt2spk=None,
spk2utt=None,
reverse=False,
std_floor=1.0e-20,
):
self.stats_file = stats
self.norm_means = norm_means
self.norm_vars = norm_vars
self.reverse = reverse
if isinstance(stats, dict):
stats_dict = dict(stats)
else:
# Use for global CMVN
if filetype == "mat":
stats_dict = {None: kaldiio.load_mat(stats)}
# Use for global CMVN
elif filetype == "npy":
stats_dict = {None: np.load(stats)}
# Use for speaker CMVN
elif filetype == "ark":
self.accept_uttid = True
stats_dict = dict(kaldiio.load_ark(stats))
# Use for speaker CMVN
elif filetype == "hdf5":
self.accept_uttid = True
stats_dict = h5py.File(stats)
else:
raise ValueError("Not supporting filetype={}".format(filetype))
if utt2spk is not None:
self.utt2spk = {}
with io.open(utt2spk, "r", encoding="utf-8") as f:
for line in f:
utt, spk = line.rstrip().split(None, 1)
self.utt2spk[utt] = spk
elif spk2utt is not None:
self.utt2spk = {}
with io.open(spk2utt, "r", encoding="utf-8") as f:
for line in f:
spk, utts = line.rstrip().split(None, 1)
for utt in utts.split():
self.utt2spk[utt] = spk
else:
self.utt2spk = None
# Kaldi makes a matrix for CMVN which has a shape of (2, feat_dim + 1),
# and the first vector contains the sum of feats and the second is
# the sum of squares. The last value of the first, i.e. stats[0,-1],
# is the number of samples for this statistics.
self.bias = {}
self.scale = {}
for spk, stats in stats_dict.items():
assert len(stats) == 2, stats.shape
count = stats[0, -1]
# If the feature has two or more dimensions
if not (np.isscalar(count) or isinstance(count, (int, float))):
# The first is only used
count = count.flatten()[0]
mean = stats[0, :-1] / count
# V(x) = E(x^2) - (E(x))^2
var = stats[1, :-1] / count - mean * mean
std = np.maximum(np.sqrt(var), std_floor)
self.bias[spk] = -mean
self.scale[spk] = 1 / std
def __repr__(self):
return (
"{name}(stats_file={stats_file}, "
"norm_means={norm_means}, norm_vars={norm_vars}, "
"reverse={reverse})".format(
name=self.__class__.__name__,
stats_file=self.stats_file,
norm_means=self.norm_means,
norm_vars=self.norm_vars,
reverse=self.reverse,
)
)
def __call__(self, x, uttid=None):
if self.utt2spk is not None:
spk = self.utt2spk[uttid]
else:
spk = uttid
if not self.reverse:
# apply cmvn
if self.norm_means:
x = np.add(x, self.bias[spk])
if self.norm_vars:
x = np.multiply(x, self.scale[spk])
else:
# apply reverse cmvn
if self.norm_vars:
x = np.divide(x, self.scale[spk])
if self.norm_means:
x = np.subtract(x, self.bias[spk])
return x
class UtteranceCMVN():
"Apply Utterance CMVN"
def __init__(self, norm_means=True, norm_vars=False, std_floor=1.0e-20):
self.norm_means = norm_means
self.norm_vars = norm_vars
self.std_floor = std_floor
def __repr__(self):
return "{name}(norm_means={norm_means}, norm_vars={norm_vars})".format(
name=self.__class__.__name__,
norm_means=self.norm_means,
norm_vars=self.norm_vars,
)
def __call__(self, x, uttid=None):
# x: [Time, Dim]
square_sums = (x ** 2).sum(axis=0)
mean = x.mean(axis=0)
if self.norm_means:
x = np.subtract(x, mean)
if self.norm_vars:
var = square_sums / x.shape[0] - mean ** 2
std = np.maximum(np.sqrt(var), self.std_floor)
x = np.divide(x, std)
return x

@ -0,0 +1,237 @@
import io
import logging
import sys
import h5py
import kaldiio
import soundfile
from deepspeech.io.reader import SoundHDF5File
def file_reader_helper(
rspecifier: str,
filetype: str = "mat",
return_shape: bool = False,
segments: str = None,
):
"""Read uttid and array in kaldi style
This function might be a bit confusing as "ark" is used
for HDF5 to imitate "kaldi-rspecifier".
Args:
rspecifier: Give as "ark:feats.ark" or "scp:feats.scp"
filetype: "mat" is kaldi-martix, "hdf5": HDF5
return_shape: Return the shape of the matrix,
instead of the matrix. This can reduce IO cost for HDF5.
segments (str): The file format is
"<segment-id> <recording-id> <start-time> <end-time>\n"
"e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\n"
Returns:
Generator[Tuple[str, np.ndarray], None, None]:
Examples:
Read from kaldi-matrix ark file:
>>> for u, array in file_reader_helper('ark:feats.ark', 'mat'):
... array
Read from HDF5 file:
>>> for u, array in file_reader_helper('ark:feats.h5', 'hdf5'):
... array
"""
if filetype == "mat":
return KaldiReader(rspecifier, return_shape=return_shape, segments=segments)
elif filetype == "hdf5":
return HDF5Reader(rspecifier, return_shape=return_shape)
elif filetype == "sound.hdf5":
return SoundHDF5Reader(rspecifier, return_shape=return_shape)
elif filetype == "sound":
return SoundReader(rspecifier, return_shape=return_shape)
else:
raise NotImplementedError(f"filetype={filetype}")
class KaldiReader:
def __init__(self, rspecifier, return_shape=False, segments=None):
self.rspecifier = rspecifier
self.return_shape = return_shape
self.segments = segments
def __iter__(self):
with kaldiio.ReadHelper(self.rspecifier, segments=self.segments) as reader:
for key, array in reader:
if self.return_shape:
array = array.shape
yield key, array
class HDF5Reader:
def __init__(self, rspecifier, return_shape=False):
if ":" not in rspecifier:
raise ValueError(
'Give "rspecifier" such as "ark:some.ark: {}"'.format(self.rspecifier)
)
self.rspecifier = rspecifier
self.ark_or_scp, self.filepath = self.rspecifier.split(":", 1)
if self.ark_or_scp not in ["ark", "scp"]:
raise ValueError(f"Must be scp or ark: {self.ark_or_scp}")
self.return_shape = return_shape
def __iter__(self):
if self.ark_or_scp == "scp":
hdf5_dict = {}
with open(self.filepath, "r", encoding="utf-8") as f:
for line in f:
key, value = line.rstrip().split(None, 1)
if ":" not in value:
raise RuntimeError(
"scp file for hdf5 should be like: "
'"uttid filepath.h5:key": {}({})'.format(
line, self.filepath
)
)
path, h5_key = value.split(":", 1)
hdf5_file = hdf5_dict.get(path)
if hdf5_file is None:
try:
hdf5_file = h5py.File(path, "r")
except Exception:
logging.error("Error when loading {}".format(path))
raise
hdf5_dict[path] = hdf5_file
try:
data = hdf5_file[h5_key]
except Exception:
logging.error(
"Error when loading {} with key={}".format(path, h5_key)
)
raise
if self.return_shape:
yield key, data.shape
else:
yield key, data[()]
# Closing all files
for k in hdf5_dict:
try:
hdf5_dict[k].close()
except Exception:
pass
else:
if self.filepath == "-":
# Required h5py>=2.9
filepath = io.BytesIO(sys.stdin.buffer.read())
else:
filepath = self.filepath
with h5py.File(filepath, "r") as f:
for key in f:
if self.return_shape:
yield key, f[key].shape
else:
yield key, f[key][()]
class SoundHDF5Reader:
def __init__(self, rspecifier, return_shape=False):
if ":" not in rspecifier:
raise ValueError(
'Give "rspecifier" such as "ark:some.ark: {}"'.format(rspecifier)
)
self.ark_or_scp, self.filepath = rspecifier.split(":", 1)
if self.ark_or_scp not in ["ark", "scp"]:
raise ValueError(f"Must be scp or ark: {self.ark_or_scp}")
self.return_shape = return_shape
def __iter__(self):
if self.ark_or_scp == "scp":
hdf5_dict = {}
with open(self.filepath, "r", encoding="utf-8") as f:
for line in f:
key, value = line.rstrip().split(None, 1)
if ":" not in value:
raise RuntimeError(
"scp file for hdf5 should be like: "
'"uttid filepath.h5:key": {}({})'.format(
line, self.filepath
)
)
path, h5_key = value.split(":", 1)
hdf5_file = hdf5_dict.get(path)
if hdf5_file is None:
try:
hdf5_file = SoundHDF5File(path, "r")
except Exception:
logging.error("Error when loading {}".format(path))
raise
hdf5_dict[path] = hdf5_file
try:
data = hdf5_file[h5_key]
except Exception:
logging.error(
"Error when loading {} with key={}".format(path, h5_key)
)
raise
# Change Tuple[ndarray, int] -> Tuple[int, ndarray]
# (soundfile style -> scipy style)
array, rate = data
if self.return_shape:
array = array.shape
yield key, (rate, array)
# Closing all files
for k in hdf5_dict:
try:
hdf5_dict[k].close()
except Exception:
pass
else:
if self.filepath == "-":
# Required h5py>=2.9
filepath = io.BytesIO(sys.stdin.buffer.read())
else:
filepath = self.filepath
for key, (a, r) in SoundHDF5File(filepath, "r").items():
if self.return_shape:
a = a.shape
yield key, (r, a)
class SoundReader:
def __init__(self, rspecifier, return_shape=False):
if ":" not in rspecifier:
raise ValueError(
'Give "rspecifier" such as "scp:some.scp: {}"'.format(rspecifier)
)
self.ark_or_scp, self.filepath = rspecifier.split(":", 1)
if self.ark_or_scp != "scp":
raise ValueError(
'Only supporting "scp" for sound file: {}'.format(self.ark_or_scp)
)
self.return_shape = return_shape
def __iter__(self):
with open(self.filepath, "r", encoding="utf-8") as f:
for line in f:
key, sound_file_path = line.rstrip().split(None, 1)
# Assume PCM16
array, rate = soundfile.read(sound_file_path, dtype="int16")
# Change Tuple[ndarray, int] -> Tuple[int, ndarray]
# (soundfile style -> scipy style)
if self.return_shape:
array = array.shape
yield key, (rate, array)

@ -0,0 +1,65 @@
from collections.abc import Sequence
from distutils.util import strtobool as dist_strtobool
import sys
import numpy
def strtobool(x):
# distutils.util.strtobool returns integer, but it's confusing,
return bool(dist_strtobool(x))
def get_commandline_args():
extra_chars = [
" ",
";",
"&",
"(",
")",
"|",
"^",
"<",
">",
"?",
"*",
"[",
"]",
"$",
"`",
'"',
"\\",
"!",
"{",
"}",
]
# Escape the extra characters for shell
argv = [
arg.replace("'", "'\\''")
if all(char not in arg for char in extra_chars)
else "'" + arg.replace("'", "'\\''") + "'"
for arg in sys.argv
]
return sys.executable + " " + " ".join(argv)
def is_scipy_wav_style(value):
# If Tuple[int, numpy.ndarray] or not
return (
isinstance(value, Sequence)
and len(value) == 2
and isinstance(value[0], int)
and isinstance(value[1], numpy.ndarray)
)
def assert_scipy_wav_style(value):
assert is_scipy_wav_style(
value
), "Must be Tuple[int, numpy.ndarray], but got {}".format(
type(value)
if not isinstance(value, Sequence)
else "{}[{}]".format(type(value), ", ".join(str(type(v)) for v in value))
)

@ -0,0 +1,282 @@
from pathlib import Path
from typing import Dict
import h5py
import kaldiio
import numpy
import soundfile
from deepspeech.utils.cli_utils import assert_scipy_wav_style
from deepspeech.io.reader import SoundHDF5File
def file_writer_helper(
wspecifier: str,
filetype: str = "mat",
write_num_frames: str = None,
compress: bool = False,
compression_method: int = 2,
pcm_format: str = "wav",
):
"""Write matrices in kaldi style
Args:
wspecifier: e.g. ark,scp:out.ark,out.scp
filetype: "mat" is kaldi-martix, "hdf5": HDF5
write_num_frames: e.g. 'ark,t:num_frames.txt'
compress: Compress or not
compression_method: Specify compression level
Write in kaldi-matrix-ark with "kaldi-scp" file:
>>> with file_writer_helper('ark,scp:out.ark,out.scp') as f:
>>> f['uttid'] = array
This "scp" has the following format:
uttidA out.ark:1234
uttidB out.ark:2222
where, 1234 and 2222 points the strating byte address of the matrix.
(For detail, see official documentation of Kaldi)
Write in HDF5 with "scp" file:
>>> with file_writer_helper('ark,scp:out.h5,out.scp', 'hdf5') as f:
>>> f['uttid'] = array
This "scp" file is created as:
uttidA out.h5:uttidA
uttidB out.h5:uttidB
HDF5 can be, unlike "kaldi-ark", accessed to any keys,
so originally "scp" is not required for random-reading.
Nevertheless we create "scp" for HDF5 because it is useful
for some use-case. e.g. Concatenation, Splitting.
"""
if filetype == "mat":
return KaldiWriter(
wspecifier,
write_num_frames=write_num_frames,
compress=compress,
compression_method=compression_method,
)
elif filetype == "hdf5":
return HDF5Writer(
wspecifier, write_num_frames=write_num_frames, compress=compress
)
elif filetype == "sound.hdf5":
return SoundHDF5Writer(
wspecifier, write_num_frames=write_num_frames, pcm_format=pcm_format
)
elif filetype == "sound":
return SoundWriter(
wspecifier, write_num_frames=write_num_frames, pcm_format=pcm_format
)
else:
raise NotImplementedError(f"filetype={filetype}")
class BaseWriter:
def __setitem__(self, key, value):
raise NotImplementedError
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
def close(self):
try:
self.writer.close()
except Exception:
pass
if self.writer_scp is not None:
try:
self.writer_scp.close()
except Exception:
pass
if self.writer_nframe is not None:
try:
self.writer_nframe.close()
except Exception:
pass
def get_num_frames_writer(write_num_frames: str):
"""get_num_frames_writer
Examples:
>>> get_num_frames_writer('ark,t:num_frames.txt')
"""
if write_num_frames is not None:
if ":" not in write_num_frames:
raise ValueError(
'Must include ":", write_num_frames={}'.format(write_num_frames)
)
nframes_type, nframes_file = write_num_frames.split(":", 1)
if nframes_type != "ark,t":
raise ValueError(
"Only supporting text mode. "
"e.g. --write-num-frames=ark,t:foo.txt :"
"{}".format(nframes_type)
)
return open(nframes_file, "w", encoding="utf-8")
class KaldiWriter(BaseWriter):
def __init__(
self, wspecifier, write_num_frames=None, compress=False, compression_method=2
):
if compress:
self.writer = kaldiio.WriteHelper(
wspecifier, compression_method=compression_method
)
else:
self.writer = kaldiio.WriteHelper(wspecifier)
self.writer_scp = None
if write_num_frames is not None:
self.writer_nframe = get_num_frames_writer(write_num_frames)
else:
self.writer_nframe = None
def __setitem__(self, key, value):
self.writer[key] = value
if self.writer_nframe is not None:
self.writer_nframe.write(f"{key} {len(value)}\n")
def parse_wspecifier(wspecifier: str) -> Dict[str, str]:
"""Parse wspecifier to dict
Examples:
>>> parse_wspecifier('ark,scp:out.ark,out.scp')
{'ark': 'out.ark', 'scp': 'out.scp'}
"""
ark_scp, filepath = wspecifier.split(":", 1)
if ark_scp not in ["ark", "scp,ark", "ark,scp"]:
raise ValueError("{} is not allowed: {}".format(ark_scp, wspecifier))
ark_scps = ark_scp.split(",")
filepaths = filepath.split(",")
if len(ark_scps) != len(filepaths):
raise ValueError("Mismatch: {} and {}".format(ark_scp, filepath))
spec_dict = dict(zip(ark_scps, filepaths))
return spec_dict
class HDF5Writer(BaseWriter):
"""HDF5Writer
Examples:
>>> with HDF5Writer('ark:out.h5', compress=True) as f:
... f['key'] = array
"""
def __init__(self, wspecifier, write_num_frames=None, compress=False):
spec_dict = parse_wspecifier(wspecifier)
self.filename = spec_dict["ark"]
if compress:
self.kwargs = {"compression": "gzip"}
else:
self.kwargs = {}
self.writer = h5py.File(spec_dict["ark"], "w")
if "scp" in spec_dict:
self.writer_scp = open(spec_dict["scp"], "w", encoding="utf-8")
else:
self.writer_scp = None
if write_num_frames is not None:
self.writer_nframe = get_num_frames_writer(write_num_frames)
else:
self.writer_nframe = None
def __setitem__(self, key, value):
self.writer.create_dataset(key, data=value, **self.kwargs)
if self.writer_scp is not None:
self.writer_scp.write(f"{key} {self.filename}:{key}\n")
if self.writer_nframe is not None:
self.writer_nframe.write(f"{key} {len(value)}\n")
class SoundHDF5Writer(BaseWriter):
"""SoundHDF5Writer
Examples:
>>> fs = 16000
>>> with SoundHDF5Writer('ark:out.h5') as f:
... f['key'] = fs, array
"""
def __init__(self, wspecifier, write_num_frames=None, pcm_format="wav"):
self.pcm_format = pcm_format
spec_dict = parse_wspecifier(wspecifier)
self.filename = spec_dict["ark"]
self.writer = SoundHDF5File(spec_dict["ark"], "w", format=self.pcm_format)
if "scp" in spec_dict:
self.writer_scp = open(spec_dict["scp"], "w", encoding="utf-8")
else:
self.writer_scp = None
if write_num_frames is not None:
self.writer_nframe = get_num_frames_writer(write_num_frames)
else:
self.writer_nframe = None
def __setitem__(self, key, value):
assert_scipy_wav_style(value)
# Change Tuple[int, ndarray] -> Tuple[ndarray, int]
# (scipy style -> soundfile style)
value = (value[1], value[0])
self.writer.create_dataset(key, data=value)
if self.writer_scp is not None:
self.writer_scp.write(f"{key} {self.filename}:{key}\n")
if self.writer_nframe is not None:
self.writer_nframe.write(f"{key} {len(value[0])}\n")
class SoundWriter(BaseWriter):
"""SoundWriter
Examples:
>>> fs = 16000
>>> with SoundWriter('ark,scp:outdir,out.scp') as f:
... f['key'] = fs, array
"""
def __init__(self, wspecifier, write_num_frames=None, pcm_format="wav"):
self.pcm_format = pcm_format
spec_dict = parse_wspecifier(wspecifier)
# e.g. ark,scp:dirname,wav.scp
# -> The wave files are found in dirname/*.wav
self.dirname = spec_dict["ark"]
Path(self.dirname).mkdir(parents=True, exist_ok=True)
self.writer = None
if "scp" in spec_dict:
self.writer_scp = open(spec_dict["scp"], "w", encoding="utf-8")
else:
self.writer_scp = None
if write_num_frames is not None:
self.writer_nframe = get_num_frames_writer(write_num_frames)
else:
self.writer_nframe = None
def __setitem__(self, key, value):
assert_scipy_wav_style(value)
rate, signal = value
wavfile = Path(self.dirname) / (key + "." + self.pcm_format)
soundfile.write(wavfile, signal.astype(numpy.int16), rate)
if self.writer_scp is not None:
self.writer_scp.write(f"{key} {wavfile}\n")
if self.writer_nframe is not None:
self.writer_nframe.write(f"{key} {len(signal)}\n")

@ -2,6 +2,20 @@
stage=-1
stop_stage=100
nj=32
debugmode=1
dumpdir=dump # directory to dump full features
N=0 # number of minibatches to be used (mainly for debugging). "0" uses all minibatches.
verbose=0 # verbose option
resume= # Resume the training from snapshot
# feature configuration
do_delta=false
# Set this to somewhere where you want to put your data, or where
# someone else has already put it. You'll want to change this
# if you're not on the CLSP grid.
datadir=${MAIN_ROOT}/examples/dataset/
# bpemode (unigram or bpe)
nbpe=5000
@ -10,11 +24,21 @@ bpeprefix="data/bpe_${bpemode}_${nbpe}"
source ${MAIN_ROOT}/utils/parse_options.sh
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail
train_set=train_960
train_sp=train_sp
train_dev=dev
recog_set="test_clean test_other dev_clean dev_other"
mkdir -p data
TARGET_DIR=${MAIN_ROOT}/examples/dataset
mkdir -p ${TARGET_DIR}
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
# download data, generate manifests
python3 ${TARGET_DIR}/librispeech/librispeech.py \
@ -46,43 +70,89 @@ if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# compute mean and stddev for normalizer
num_workers=$(nproc)
python3 ${MAIN_ROOT}/utils/compute_mean_std.py \
--manifest_path="data/manifest.train.raw" \
--num_samples=-1 \
--spectrum_type="fbank" \
--feat_dim=80 \
--delta_delta=false \
--sample_rate=16000 \
--stride_ms=10.0 \
--window_ms=25.0 \
--use_dB_normalization=False \
--num_workers=${num_workers} \
--output_path="data/mean_std.json"
if [ $? -ne 0 ]; then
echo "Compute mean and stddev failed. Terminated."
exit 1
fi
### Task dependent. You have to make data the following preparation part by yourself.
### But you can utilize Kaldi recipes in most cases
echo "stage 0: Data preparation"
for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
# use underscore-separated names in data directories.
local/data_prep.sh ${datadir}/librispeech/${part}/LibriSpeech/${part} data/${part//-/_}
done
fi
feat_tr_dir=${dumpdir}/${train_set}/delta${do_delta}; mkdir -p ${feat_tr_dir}
feat_sp_dir=${dumpdir}/${train_sp}/delta${do_delta}; mkdir -p ${feat_sp_dir}
feat_dt_dir=${dumpdir}/${train_dev}/delta${do_delta}; mkdir -p ${feat_dt_dir}
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# build vocabulary
python3 ${MAIN_ROOT}/utils/build_vocab.py \
--unit_type "spm" \
--spm_vocab_size=${nbpe} \
--spm_mode ${bpemode} \
--spm_model_prefix ${bpeprefix} \
--vocab_path="data/vocab.txt" \
--manifest_paths="data/manifest.train.raw"
### Task dependent. You have to design training and dev sets by yourself.
### But you can utilize Kaldi recipes in most cases
echo "stage 1: Feature Generation"
fbankdir=fbank
# Generate the fbank features; by default 80-dimensional fbanks with pitch on each frame
for x in dev_clean test_clean dev_other test_other train_clean_100 train_clean_360 train_other_500; do
steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj ${nj} --write_utt2num_frames true \
data/${x} exp/make_fbank/${x} ${fbankdir}
utils/fix_data_dir.sh data/${x}
done
if [ $? -ne 0 ]; then
echo "Build vocabulary failed. Terminated."
exit 1
fi
utils/combine_data.sh --extra_files utt2num_frames data/${train_set}_org data/train_clean_100 data/train_clean_360 data/train_other_500
utils/combine_data.sh --extra_files utt2num_frames data/${train_dev}_org data/dev_clean data/dev_other
utils/perturb_data_dir_speed.sh 0.9 data/${train_set}_org data/temp1
utils/perturb_data_dir_speed.sh 1.0 data/${train_set}_org data/temp2
utils/perturb_data_dir_speed.sh 1.1 data/${train_set}_org data/temp3
utils/combine_data.sh --extra-files utt2uniq data/${train_sp}_org data/temp1 data/temp2 data/temp3
# remove utt having more than 3000 frames
# remove utt having more than 400 characters
remove_longshortdata.sh --maxframes 3000 --maxchars 400 data/${train_set}_org data/${train_set}
remove_longshortdata.sh --maxframes 3000 --maxchars 400 data/${train_sp}_org data/${train_sp}
remove_longshortdata.sh --maxframes 3000 --maxchars 400 data/${train_dev}_org data/${train_dev}
steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj $nj --write_utt2num_frames true \
data/train_sp exp/make_fbank/train_sp ${fbankdir}
utils/fix_data_dir.sh data/train_sp
# compute global CMVN
compute-cmvn-stats scp:data/${train_sp}/feats.scp data/${train_sp}/cmvn.ark
# dump features for training
dump.sh --cmd "$train_cmd" --nj ${nj} --do_delta ${do_delta} \
data/${train_sp}/feats.scp data/${train_sp}/cmvn.ark exp/dump_feats/train ${feat_sp_dir}
dump.sh --cmd "$train_cmd" --nj ${nj} --do_delta ${do_delta} \
data/${train_dev}/feats.scp data/${train_sp}/cmvn.ark exp/dump_feats/dev ${feat_dt_dir}
for rtask in ${recog_set}; do
feat_recog_dir=${dumpdir}/${rtask}/delta${do_delta}; mkdir -p ${feat_recog_dir}
dump.sh --cmd "$train_cmd" --nj ${nj} --do_delta ${do_delta} \
data/${rtask}/feats.scp data/${train_sp}/cmvn.ark exp/dump_feats/recog/${rtask} \
${feat_recog_dir}
done
fi
dict=data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt
bpemodel=data/lang_char/${train_set}_${bpemode}${nbpe}
echo "dictionary: ${dict}"
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
### Task dependent. You have to check non-linguistic symbols used in the corpus.
echo "stage 2: Dictionary and Json Data Preparation"
mkdir -p data/lang_char/
echo "<unk> 1" > ${dict} # <unk> must be 1, 0 will be used for "blank" in CTC
cut -f 2- -d" " data/${train_set}/text > data/lang_char/input.txt
spm_train --input=data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000
spm_encode --model=${bpemodel}.model --output_format=piece < data/lang_char/input.txt | tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+1}' >> ${dict}
wc -l ${dict}
# make json labels
data2json.sh --nj ${nj} --feat ${feat_sp_dir}/feats.scp --bpecode ${bpemodel}.model \
data/${train_sp} ${dict} > ${feat_sp_dir}/data_${bpemode}${nbpe}.json
data2json.sh --nj ${nj} --feat ${feat_dt_dir}/feats.scp --bpecode ${bpemodel}.model \
data/${train_dev} ${dict} > ${feat_dt_dir}/data_${bpemode}${nbpe}.json
for rtask in ${recog_set}; do
feat_recog_dir=${dumpdir}/${rtask}/delta${do_delta}
data2json.sh --nj ${nj} --feat ${feat_recog_dir}/feats.scp --bpecode ${bpemodel}.model \
data/${rtask} ${dict} > ${feat_recog_dir}/data_${bpemode}${nbpe}.json
done
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# format manifest with tokenids, vocab size
for set in train dev test dev-clean dev-other test-clean test-other; do

@ -0,0 +1,85 @@
#!/usr/bin/env bash
# Copyright 2014 Vassil Panayotov
# 2014 Johns Hopkins University (author: Daniel Povey)
# Apache 2.0
if [ "$#" -ne 2 ]; then
echo "Usage: $0 <src-dir> <dst-dir>"
echo "e.g.: $0 /export/a15/vpanayotov/data/LibriSpeech/dev-clean data/dev-clean"
exit 1
fi
src=$1
dst=$2
# all utterances are FLAC compressed
if ! which flac >&/dev/null; then
echo "Please install 'flac' on ALL worker nodes!"
exit 1
fi
spk_file=$src/../SPEAKERS.TXT
mkdir -p $dst || exit 1
[ ! -d $src ] && echo "$0: no such directory $src" && exit 1
[ ! -f $spk_file ] && echo "$0: expected file $spk_file to exist" && exit 1
wav_scp=$dst/wav.scp; [[ -f "$wav_scp" ]] && rm $wav_scp
trans=$dst/text; [[ -f "$trans" ]] && rm $trans
utt2spk=$dst/utt2spk; [[ -f "$utt2spk" ]] && rm $utt2spk
spk2gender=$dst/spk2gender; [[ -f $spk2gender ]] && rm $spk2gender
for reader_dir in $(find -L $src -mindepth 1 -maxdepth 1 -type d | sort); do
reader=$(basename $reader_dir)
if ! [ $reader -eq $reader ]; then # not integer.
echo "$0: unexpected subdirectory name $reader"
exit 1
fi
reader_gender=$(egrep "^$reader[ ]+\|" $spk_file | awk -F'|' '{gsub(/[ ]+/, ""); print tolower($2)}')
if [ "$reader_gender" != 'm' ] && [ "$reader_gender" != 'f' ]; then
echo "Unexpected gender: '$reader_gender'"
exit 1
fi
for chapter_dir in $(find -L $reader_dir/ -mindepth 1 -maxdepth 1 -type d | sort); do
chapter=$(basename $chapter_dir)
if ! [ "$chapter" -eq "$chapter" ]; then
echo "$0: unexpected chapter-subdirectory name $chapter"
exit 1
fi
find -L $chapter_dir/ -iname "*.flac" | sort | xargs -I% basename % .flac | \
awk -v "dir=$chapter_dir" '{printf "%s flac -c -d -s %s/%s.flac |\n", $0, dir, $0}' >>$wav_scp|| exit 1
chapter_trans=$chapter_dir/${reader}-${chapter}.trans.txt
[ ! -f $chapter_trans ] && echo "$0: expected file $chapter_trans to exist" && exit 1
cat $chapter_trans >>$trans
# NOTE: For now we are using per-chapter utt2spk. That is each chapter is considered
# to be a different speaker. This is done for simplicity and because we want
# e.g. the CMVN to be calculated per-chapter
awk -v "reader=$reader" -v "chapter=$chapter" '{printf "%s %s-%s\n", $1, reader, chapter}' \
<$chapter_trans >>$utt2spk || exit 1
# reader -> gender map (again using per-chapter granularity)
echo "${reader}-${chapter} $reader_gender" >>$spk2gender
done
done
spk2utt=$dst/spk2utt
utils/utt2spk_to_spk2utt.pl <$utt2spk >$spk2utt || exit 1
ntrans=$(wc -l <$trans)
nutt2spk=$(wc -l <$utt2spk)
! [ "$ntrans" -eq "$nutt2spk" ] && \
echo "Inconsistent #transcripts($ntrans) and #utt2spk($nutt2spk)" && exit 1
utils/validate_data_dir.sh --no-feats $dst || exit 1
echo "$0: successfully prepared data in $dst"
exit 0

@ -0,0 +1 @@
../../../tools/kaldi/egs/wsj/s5/steps/

@ -1 +1 @@
../../../utils/
../../../tools/kaldi/egs/wsj/s5/utils

@ -48,6 +48,9 @@ mfa.done:
tar xvf montreal-forced-aligner_linux.tar.gz
touch mfa.done
kaldi.done:
test -d kaldi || git clone --depth 1 https://github.com/kaldi-asr/kaldi
touch kaldi.done
#== SCTK ===============================================================================
# SCTK official repo does not have version tags. Here's the mapping:

@ -0,0 +1,156 @@
#!/usr/bin/env python3
import argparse
from distutils.util import strtobool
import logging
import kaldiio
import numpy
from deepspeech.transform.cmvn import CMVN
from deepspeech.utils.cli_readers import file_reader_helper
from deepspeech.utils.cli_utils import get_commandline_args
from deepspeech.utils.cli_utils import is_scipy_wav_style
from deepspeech.utils.cli_writers import file_writer_helper
def get_parser():
parser = argparse.ArgumentParser(
description="apply mean-variance normalization to files",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option")
parser.add_argument(
"--in-filetype",
type=str,
default="mat",
choices=["mat", "hdf5", "sound.hdf5", "sound"],
help="Specify the file format for the rspecifier. "
'"mat" is the matrix format in kaldi',
)
parser.add_argument(
"--stats-filetype",
type=str,
default="mat",
choices=["mat", "hdf5", "npy"],
help="Specify the file format for the rspecifier. "
'"mat" is the matrix format in kaldi',
)
parser.add_argument(
"--out-filetype",
type=str,
default="mat",
choices=["mat", "hdf5"],
help="Specify the file format for the wspecifier. "
'"mat" is the matrix format in kaldi',
)
parser.add_argument(
"--norm-means",
type=strtobool,
default=True,
help="Do variance normalization or not.",
)
parser.add_argument(
"--norm-vars",
type=strtobool,
default=False,
help="Do variance normalization or not.",
)
parser.add_argument(
"--reverse", type=strtobool, default=False, help="Do reverse mode or not"
)
parser.add_argument(
"--spk2utt",
type=str,
help="A text file of speaker to utterance-list map. "
"(Don't give rspecifier format, such as "
'"ark:spk2utt")',
)
parser.add_argument(
"--utt2spk",
type=str,
help="A text file of utterance to speaker map. "
"(Don't give rspecifier format, such as "
'"ark:utt2spk")',
)
parser.add_argument(
"--write-num-frames", type=str, help="Specify wspecifer for utt2num_frames"
)
parser.add_argument(
"--compress", type=strtobool, default=False, help="Save in compressed format"
)
parser.add_argument(
"--compression-method",
type=int,
default=2,
help="Specify the method(if mat) or " "gzip-level(if hdf5)",
)
parser.add_argument(
"stats_rspecifier_or_rxfilename",
help="Input stats. e.g. ark:stats.ark or stats.mat",
)
parser.add_argument(
"rspecifier", type=str, help="Read specifier id. e.g. ark:some.ark"
)
parser.add_argument(
"wspecifier", type=str, help="Write specifier id. e.g. ark:some.ark"
)
return parser
def main():
args = get_parser().parse_args()
# logging info
logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
if args.verbose > 0:
logging.basicConfig(level=logging.INFO, format=logfmt)
else:
logging.basicConfig(level=logging.WARN, format=logfmt)
logging.info(get_commandline_args())
if ":" in args.stats_rspecifier_or_rxfilename:
is_rspcifier = True
if args.stats_filetype == "npy":
stats_filetype = "hdf5"
else:
stats_filetype = args.stats_filetype
stats_dict = dict(
file_reader_helper(args.stats_rspecifier_or_rxfilename, stats_filetype)
)
else:
is_rspcifier = False
if args.stats_filetype == "mat":
stats = kaldiio.load_mat(args.stats_rspecifier_or_rxfilename)
else:
stats = numpy.load(args.stats_rspecifier_or_rxfilename)
stats_dict = {None: stats}
cmvn = CMVN(
stats=stats_dict,
norm_means=args.norm_means,
norm_vars=args.norm_vars,
utt2spk=args.utt2spk,
spk2utt=args.spk2utt,
reverse=args.reverse,
)
with file_writer_helper(
args.wspecifier,
filetype=args.out_filetype,
write_num_frames=args.write_num_frames,
compress=args.compress,
compression_method=args.compression_method,
) as writer:
for utt, mat in file_reader_helper(args.rspecifier, args.in_filetype):
if is_scipy_wav_style(mat):
# If data is sound file, then got as Tuple[int, ndarray]
rate, mat = mat
mat = cmvn(mat, utt if is_rspcifier else None)
writer[utt] = mat
if __name__ == "__main__":
main()

@ -0,0 +1,68 @@
#!/usr/bin/env python3
# encoding: utf-8
# Copyright 2021 Kyoto University (Hirofumi Inaguma)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import argparse
import codecs
from dateutil import parser
import glob
import os
def get_parser():
parser = argparse.ArgumentParser(description="calculate real time factor (RTF)")
parser.add_argument(
"--log-dir",
type=str,
default=None,
help="path to logging directory",
)
return parser
def main():
args = get_parser().parse_args()
audio_sec = 0
decode_sec = 0
n_utt = 0
audio_durations = []
start_times = []
end_times = []
for x in glob.glob(os.path.join(args.log_dir, "decode.*.log")):
with codecs.open(x, "r", "utf-8") as f:
for line in f:
x = line.strip()
if "INFO: input lengths" in x:
audio_durations += [int(x.split("input lengths: ")[1])]
start_times += [parser.parse(x.split("(")[0])]
elif "INFO: prediction" in x:
end_times += [parser.parse(x.split("(")[0])]
assert len(audio_durations) == len(end_times), (
len(audio_durations),
len(end_times),
)
assert len(start_times) == len(end_times), (len(start_times), len(end_times))
audio_sec += sum(audio_durations) / 100 # [sec]
decode_sec += sum(
[
(end - start).total_seconds()
for start, end in zip(start_times, end_times)
]
)
n_utt += len(audio_durations)
print("Total audio duration: %.3f [sec]" % audio_sec)
print("Total decoding time: %.3f [sec]" % decode_sec)
rtf = decode_sec / audio_sec if audio_sec > 0 else 0
print("RTF: %.3f" % rtf)
latency = decode_sec * 1000 / n_utt if n_utt > 0 else 0
print("Latency: %.3f [ms/sentence]" % latency)
if __name__ == "__main__":
main()

@ -0,0 +1,194 @@
#!/usr/bin/env python3
import argparse
import logging
import kaldiio
import numpy as np
from deepspeech.transform.transformation import Transformation
from deepspeech.utils.cli_readers import file_reader_helper
from deepspeech.utils.cli_utils import get_commandline_args
from deepspeech.utils.cli_utils import is_scipy_wav_style
from deepspeech.utils.cli_writers import file_writer_helper
def get_parser():
parser = argparse.ArgumentParser(
description="Compute cepstral mean and "
"variance normalization statistics"
"If wspecifier provided: per-utterance by default, "
"or per-speaker if"
"spk2utt option provided; if wxfilename: global",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--spk2utt",
type=str,
help="A text file of speaker to utterance-list map. "
"(Don't give rspecifier format, such as "
'"ark:utt2spk")',
)
parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option")
parser.add_argument(
"--in-filetype",
type=str,
default="mat",
choices=["mat", "hdf5", "sound.hdf5", "sound"],
help="Specify the file format for the rspecifier. "
'"mat" is the matrix format in kaldi',
)
parser.add_argument(
"--out-filetype",
type=str,
default="mat",
choices=["mat", "hdf5", "npy"],
help="Specify the file format for the wspecifier. "
'"mat" is the matrix format in kaldi',
)
parser.add_argument(
"--preprocess-conf",
type=str,
default=None,
help="The configuration file for the pre-processing",
)
parser.add_argument(
"rspecifier", type=str, help="Read specifier for feats. e.g. ark:some.ark"
)
parser.add_argument(
"wspecifier_or_wxfilename", type=str, help="Write specifier. e.g. ark:some.ark"
)
return parser
def main():
args = get_parser().parse_args()
logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
if args.verbose > 0:
logging.basicConfig(level=logging.INFO, format=logfmt)
else:
logging.basicConfig(level=logging.WARN, format=logfmt)
logging.info(get_commandline_args())
is_wspecifier = ":" in args.wspecifier_or_wxfilename
if is_wspecifier:
if args.spk2utt is not None:
logging.info("Performing as speaker CMVN mode")
utt2spk_dict = {}
with open(args.spk2utt) as f:
for line in f:
spk, utts = line.rstrip().split(None, 1)
for utt in utts.split():
utt2spk_dict[utt] = spk
def utt2spk(x):
return utt2spk_dict[x]
else:
logging.info("Performing as utterance CMVN mode")
def utt2spk(x):
return x
if args.out_filetype == "npy":
logging.warning(
"--out-filetype npy is allowed only for "
"Global CMVN mode, changing to hdf5"
)
args.out_filetype = "hdf5"
else:
logging.info("Performing as global CMVN mode")
if args.spk2utt is not None:
logging.warning("spk2utt is not used for global CMVN mode")
def utt2spk(x):
return None
if args.out_filetype == "hdf5":
logging.warning(
"--out-filetype hdf5 is not allowed for "
"Global CMVN mode, changing to npy"
)
args.out_filetype = "npy"
if args.preprocess_conf is not None:
preprocessing = Transformation(args.preprocess_conf)
logging.info("Apply preprocessing: {}".format(preprocessing))
else:
preprocessing = None
# Calculate stats for each speaker
counts = {}
sum_feats = {}
square_sum_feats = {}
idx = 0
for idx, (utt, matrix) in enumerate(
file_reader_helper(args.rspecifier, args.in_filetype), 1
):
if is_scipy_wav_style(matrix):
# If data is sound file, then got as Tuple[int, ndarray]
rate, matrix = matrix
if preprocessing is not None:
matrix = preprocessing(matrix, uttid_list=utt)
spk = utt2spk(utt)
# Init at the first seen of the spk
if spk not in counts:
counts[spk] = 0
feat_shape = matrix.shape[1:]
# Accumulate in double precision
sum_feats[spk] = np.zeros(feat_shape, dtype=np.float64)
square_sum_feats[spk] = np.zeros(feat_shape, dtype=np.float64)
counts[spk] += matrix.shape[0]
sum_feats[spk] += matrix.sum(axis=0)
square_sum_feats[spk] += (matrix ** 2).sum(axis=0)
logging.info("Processed {} utterances".format(idx))
assert idx > 0, idx
cmvn_stats = {}
for spk in counts:
feat_shape = sum_feats[spk].shape
cmvn_shape = (2, feat_shape[0] + 1) + feat_shape[1:]
_cmvn_stats = np.empty(cmvn_shape, dtype=np.float64)
_cmvn_stats[0, :-1] = sum_feats[spk]
_cmvn_stats[1, :-1] = square_sum_feats[spk]
_cmvn_stats[0, -1] = counts[spk]
_cmvn_stats[1, -1] = 0.0
# You can get the mean and std as following,
# >>> N = _cmvn_stats[0, -1]
# >>> mean = _cmvn_stats[0, :-1] / N
# >>> std = np.sqrt(_cmvn_stats[1, :-1] / N - mean ** 2)
cmvn_stats[spk] = _cmvn_stats
# Per utterance or speaker CMVN
if is_wspecifier:
with file_writer_helper(
args.wspecifier_or_wxfilename, filetype=args.out_filetype
) as writer:
for spk, mat in cmvn_stats.items():
writer[spk] = mat
# Global CMVN
else:
matrix = cmvn_stats[None]
if args.out_filetype == "npy":
np.save(args.wspecifier_or_wxfilename, matrix)
elif args.out_filetype == "mat":
# Kaldi supports only matrix or vector
kaldiio.save_mat(args.wspecifier_or_wxfilename, matrix)
else:
raise RuntimeError(
"Not supporting: --out-filetype {}".format(args.out_filetype)
)
if __name__ == "__main__":
main()

@ -0,0 +1,105 @@
#!/usr/bin/env python3
import argparse
from distutils.util import strtobool
import logging
from deepspeech.transform.transformation import Transformation
from deepspeech.utils.cli_readers import file_reader_helper
from deepspeech.utils.cli_utils import get_commandline_args
from deepspeech.utils.cli_utils import is_scipy_wav_style
from deepspeech.utils.cli_writers import file_writer_helper
def get_parser():
parser = argparse.ArgumentParser(
description="copy feature with preprocessing",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option")
parser.add_argument(
"--in-filetype",
type=str,
default="mat",
choices=["mat", "hdf5", "sound.hdf5", "sound"],
help="Specify the file format for the rspecifier. "
'"mat" is the matrix format in kaldi',
)
parser.add_argument(
"--out-filetype",
type=str,
default="mat",
choices=["mat", "hdf5", "sound.hdf5", "sound"],
help="Specify the file format for the wspecifier. "
'"mat" is the matrix format in kaldi',
)
parser.add_argument(
"--write-num-frames", type=str, help="Specify wspecifer for utt2num_frames"
)
parser.add_argument(
"--compress", type=strtobool, default=False, help="Save in compressed format"
)
parser.add_argument(
"--compression-method",
type=int,
default=2,
help="Specify the method(if mat) or " "gzip-level(if hdf5)",
)
parser.add_argument(
"--preprocess-conf",
type=str,
default=None,
help="The configuration file for the pre-processing",
)
parser.add_argument(
"rspecifier", type=str, help="Read specifier for feats. e.g. ark:some.ark"
)
parser.add_argument(
"wspecifier", type=str, help="Write specifier. e.g. ark:some.ark"
)
return parser
def main():
parser = get_parser()
args = parser.parse_args()
# logging info
logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
if args.verbose > 0:
logging.basicConfig(level=logging.INFO, format=logfmt)
else:
logging.basicConfig(level=logging.WARN, format=logfmt)
logging.info(get_commandline_args())
if args.preprocess_conf is not None:
preprocessing = Transformation(args.preprocess_conf)
logging.info("Apply preprocessing: {}".format(preprocessing))
else:
preprocessing = None
with file_writer_helper(
args.wspecifier,
filetype=args.out_filetype,
write_num_frames=args.write_num_frames,
compress=args.compress,
compression_method=args.compression_method,
) as writer:
for utt, mat in file_reader_helper(args.rspecifier, args.in_filetype):
if is_scipy_wav_style(mat):
# If data is sound file, then got as Tuple[int, ndarray]
rate, mat = mat
if preprocessing is not None:
mat = preprocessing(mat, uttid_list=utt)
# shape = (Time, Channel)
if args.out_filetype in ["sound.hdf5", "sound"]:
# Write Tuple[int, numpy.ndarray] (scipy style)
writer[utt] = (rate, mat)
else:
writer[utt] = mat
if __name__ == "__main__":
main()

@ -0,0 +1,170 @@
#!/usr/bin/env bash
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
echo "$0 $*" >&2 # Print the command line for logging
. ./path.sh
nj=1
cmd=run.pl
nlsyms=""
lang=""
feat="" # feat.scp
oov="<unk>"
bpecode=""
allow_one_column=false
verbose=0
trans_type=char
filetype=""
preprocess_conf=""
category=""
out="" # If omitted, write in stdout
text=""
multilingual=false
help_message=$(cat << EOF
Usage: $0 <data-dir> <dict>
e.g. $0 data/train data/lang_1char/train_units.txt
Options:
--nj <nj> # number of parallel jobs
--cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs.
--feat <feat-scp> # feat.scp or feat1.scp,feat2.scp,...
--oov <oov-word> # Default: <unk>
--out <outputfile> # If omitted, write in stdout
--filetype <mat|hdf5|sound.hdf5> # Specify the format of feats file
--preprocess-conf <json> # Apply preprocess to feats when creating shape.scp
--verbose <num> # Default: 0
EOF
)
. utils/parse_options.sh
if [ $# != 2 ]; then
echo "${help_message}" 1>&2
exit 1;
fi
set -euo pipefail
dir=$1
dic=$2
tmpdir=$(mktemp -d ${dir}/tmp-XXXXX)
trap 'rm -rf ${tmpdir}' EXIT
if [ -z ${text} ]; then
text=${dir}/text
fi
# 1. Create scp files for inputs
# These are not necessary for decoding mode, and make it as an option
input=
if [ -n "${feat}" ]; then
_feat_scps=$(echo "${feat}" | tr ',' ' ' )
read -r -a feat_scps <<< $_feat_scps
num_feats=${#feat_scps[@]}
for (( i=1; i<=num_feats; i++ )); do
feat=${feat_scps[$((i-1))]}
mkdir -p ${tmpdir}/input_${i}
input+="input_${i} "
cat ${feat} > ${tmpdir}/input_${i}/feat.scp
# Dump in the "legacy" style JSON format
if [ -n "${filetype}" ]; then
awk -v filetype=${filetype} '{print $1 " " filetype}' ${feat} \
> ${tmpdir}/input_${i}/filetype.scp
fi
feat_to_shape.sh --cmd "${cmd}" --nj ${nj} \
--filetype "${filetype}" \
--preprocess-conf "${preprocess_conf}" \
--verbose ${verbose} ${feat} ${tmpdir}/input_${i}/shape.scp
done
fi
# 2. Create scp files for outputs
mkdir -p ${tmpdir}/output
if [ -n "${bpecode}" ]; then
if [ ${multilingual} = true ]; then
# remove a space before the language ID
paste -d " " <(awk '{print $1}' ${text}) <(cut -f 2- -d" " ${text} \
| spm_encode --model=${bpecode} --output_format=piece | cut -f 2- -d" ") \
> ${tmpdir}/output/token.scp
else
paste -d " " <(awk '{print $1}' ${text}) <(cut -f 2- -d" " ${text} \
| spm_encode --model=${bpecode} --output_format=piece) \
> ${tmpdir}/output/token.scp
fi
elif [ -n "${nlsyms}" ]; then
text2token.py -s 1 -n 1 -l ${nlsyms} ${text} --trans_type ${trans_type} > ${tmpdir}/output/token.scp
else
text2token.py -s 1 -n 1 ${text} --trans_type ${trans_type} > ${tmpdir}/output/token.scp
fi
< ${tmpdir}/output/token.scp utils/sym2int.pl --map-oov ${oov} -f 2- ${dic} > ${tmpdir}/output/tokenid.scp
# +2 comes from CTC blank and EOS
vocsize=$(tail -n 1 ${dic} | awk '{print $2}')
odim=$(echo "$vocsize + 2" | bc)
< ${tmpdir}/output/tokenid.scp awk -v odim=${odim} '{print $1 " " NF-1 "," odim}' > ${tmpdir}/output/shape.scp
cat ${text} > ${tmpdir}/output/text.scp
# 3. Create scp files for the others
mkdir -p ${tmpdir}/other
if [ ${multilingual} == true ]; then
awk '{
n = split($1,S,"[-]");
lang=S[n];
print $1 " " lang
}' ${text} > ${tmpdir}/other/lang.scp
elif [ -n "${lang}" ]; then
awk -v lang=${lang} '{print $1 " " lang}' ${text} > ${tmpdir}/other/lang.scp
fi
if [ -n "${category}" ]; then
awk -v category=${category} '{print $1 " " category}' ${dir}/text \
> ${tmpdir}/other/category.scp
fi
cat ${dir}/utt2spk > ${tmpdir}/other/utt2spk.scp
# 4. Merge scp files into a JSON file
opts=""
if [ -n "${feat}" ]; then
intypes="${input} output other"
else
intypes="output other"
fi
for intype in ${intypes}; do
if [ -z "$(find "${tmpdir}/${intype}" -name "*.scp")" ]; then
continue
fi
if [ ${intype} != other ]; then
opts+="--${intype%_*}-scps "
else
opts+="--scps "
fi
for x in "${tmpdir}/${intype}"/*.scp; do
k=$(basename ${x} .scp)
if [ ${k} = shape ]; then
opts+="shape:${x}:shape "
else
opts+="${k}:${x} "
fi
done
done
if ${allow_one_column}; then
opts+="--allow-one-column true "
else
opts+="--allow-one-column false "
fi
if [ -n "${out}" ]; then
opts+="-O ${out}"
fi
merge_scp2json.py --verbose ${verbose} ${opts}
rm -fr ${tmpdir}

@ -0,0 +1,95 @@
#!/usr/bin/env bash
# Copyright 2017 Nagoya University (Tomoki Hayashi)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
echo "$0 $*" # Print the command line for logging
. ./path.sh
cmd=run.pl
do_delta=false
nj=1
verbose=0
compress=true
write_utt2num_frames=true
filetype='mat' # mat or hdf5
help_message="Usage: $0 <scp> <cmvnark> <logdir> <dumpdir>"
. utils/parse_options.sh
scp=$1
cvmnark=$2
logdir=$3
dumpdir=$4
if [ $# != 4 ]; then
echo "${help_message}"
exit 1;
fi
set -euo pipefail
mkdir -p ${logdir}
mkdir -p ${dumpdir}
dumpdir=$(perl -e '($dir,$pwd)= @ARGV; if($dir!~m:^/:) { $dir = "$pwd/$dir"; } print $dir; ' ${dumpdir} ${PWD})
for n in $(seq ${nj}); do
# the next command does nothing unless $dumpdir/storage/ exists, see
# utils/create_data_link.pl for more info.
utils/create_data_link.pl ${dumpdir}/feats.${n}.ark
done
if ${write_utt2num_frames}; then
write_num_frames_opt="--write-num-frames=ark,t:$dumpdir/utt2num_frames.JOB"
else
write_num_frames_opt=
fi
# split scp file
split_scps=""
for n in $(seq ${nj}); do
split_scps="$split_scps $logdir/feats.$n.scp"
done
utils/split_scp.pl ${scp} ${split_scps} || exit 1;
# dump features
if ${do_delta}; then
${cmd} JOB=1:${nj} ${logdir}/dump_feature.JOB.log \
apply-cmvn --norm-vars=true ${cvmnark} scp:${logdir}/feats.JOB.scp ark:- \| \
add-deltas ark:- ark:- \| \
copy-feats.py --verbose ${verbose} --out-filetype ${filetype} \
--compress=${compress} --compression-method=2 ${write_num_frames_opt} \
ark:- ark,scp:${dumpdir}/feats.JOB.ark,${dumpdir}/feats.JOB.scp \
|| exit 1
else
${cmd} JOB=1:${nj} ${logdir}/dump_feature.JOB.log \
apply-cmvn --norm-vars=true ${cvmnark} scp:${logdir}/feats.JOB.scp ark:- \| \
copy-feats.py --verbose ${verbose} --out-filetype ${filetype} \
--compress=${compress} --compression-method=2 ${write_num_frames_opt} \
ark:- ark,scp:${dumpdir}/feats.JOB.ark,${dumpdir}/feats.JOB.scp \
|| exit 1
fi
# concatenate scp files
for n in $(seq ${nj}); do
cat ${dumpdir}/feats.${n}.scp || exit 1;
done > ${dumpdir}/feats.scp || exit 1
if ${write_utt2num_frames}; then
for n in $(seq ${nj}); do
cat ${dumpdir}/utt2num_frames.${n} || exit 1;
done > ${dumpdir}/utt2num_frames || exit 1
rm ${dumpdir}/utt2num_frames.* 2>/dev/null
fi
# Write the filetype, this will be used for data2json.sh
echo ${filetype} > ${dumpdir}/filetype
# remove temp scps
rm ${logdir}/feats.*.scp 2>/dev/null
if [ ${verbose} -eq 1 ]; then
echo "Succeeded dumping features for training"
fi

@ -0,0 +1,72 @@
#!/usr/bin/env bash
# Begin configuration section.
nj=4
cmd=run.pl
verbose=0
filetype=""
preprocess_conf=""
# End configuration section.
help_message=$(cat << EOF
Usage: $0 [options] <input-scp> <output-scp> [<log-dir>]
e.g.: $0 data/train/feats.scp data/train/shape.scp data/train/log
Options:
--nj <nj> # number of parallel jobs
--cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs.
--filetype <mat|hdf5|sound.hdf5> # Specify the format of feats file
--preprocess-conf <json> # Apply preprocess to feats when creating shape.scp
--verbose <num> # Default: 0
EOF
)
echo "$0 $*" 1>&2 # Print the command line for logging
. parse_options.sh || exit 1;
if [ $# -lt 2 ] || [ $# -gt 3 ]; then
echo "${help_message}" 1>&2
exit 1;
fi
set -euo pipefail
scp=$1
outscp=$2
data=$(dirname ${scp})
if [ $# -eq 3 ]; then
logdir=$3
else
logdir=${data}/log
fi
mkdir -p ${logdir}
nj=$((nj<$(<"${scp}" wc -l)?nj:$(<"${scp}" wc -l)))
split_scps=""
for n in $(seq ${nj}); do
split_scps="${split_scps} ${logdir}/feats.${n}.scp"
done
utils/split_scp.pl ${scp} ${split_scps}
if [ -n "${preprocess_conf}" ]; then
preprocess_opt="--preprocess-conf ${preprocess_conf}"
else
preprocess_opt=""
fi
if [ -n "${filetype}" ]; then
filetype_opt="--filetype ${filetype}"
else
filetype_opt=""
fi
${cmd} JOB=1:${nj} ${logdir}/feat_to_shape.JOB.log \
feat-to-shape.py --verbose ${verbose} ${preprocess_opt} ${filetype_opt} \
scp:${logdir}/feats.JOB.scp ${logdir}/shape.JOB.scp
# concatenate the .scp files together.
for n in $(seq ${nj}); do
cat ${logdir}/shape.${n}.scp
done > ${outscp}
rm -f ${logdir}/feats.*.scp 2>/dev/null

@ -0,0 +1,303 @@
#!/usr/bin/env python3
# encoding: utf-8
import argparse
import codecs
from distutils.util import strtobool
from io import open
import json
import logging
import sys
from deepspeech.utils.cli_utils import get_commandline_args
PY2 = sys.version_info[0] == 2
sys.stdin = codecs.getreader("utf-8")(sys.stdin if PY2 else sys.stdin.buffer)
sys.stdout = codecs.getwriter("utf-8")(sys.stdout if PY2 else sys.stdout.buffer)
# Special types:
def shape(x):
"""Change str to List[int]
>>> shape('3,5')
[3, 5]
>>> shape(' [3, 5] ')
[3, 5]
"""
# x: ' [3, 5] ' -> '3, 5'
x = x.strip()
if x[0] == "[":
x = x[1:]
if x[-1] == "]":
x = x[:-1]
return list(map(int, x.split(",")))
def get_parser():
parser = argparse.ArgumentParser(
description="Given each file paths with such format as "
"<key>:<file>:<type>. type> can be omitted and the default "
'is "str". e.g. {} '
"--input-scps feat:data/feats.scp shape:data/utt2feat_shape:shape "
"--input-scps feat:data/feats2.scp shape:data/utt2feat2_shape:shape "
"--output-scps text:data/text shape:data/utt2text_shape:shape "
"--scps utt2spk:data/utt2spk".format(sys.argv[0]),
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--input-scps",
type=str,
nargs="*",
action="append",
default=[],
help="Json files for the inputs",
)
parser.add_argument(
"--output-scps",
type=str,
nargs="*",
action="append",
default=[],
help="Json files for the outputs",
)
parser.add_argument(
"--scps",
type=str,
nargs="+",
default=[],
help="The json files except for the input and outputs",
)
parser.add_argument("--verbose", "-V", default=1, type=int, help="Verbose option")
parser.add_argument(
"--allow-one-column",
type=strtobool,
default=False,
help="Allow one column in input scp files. "
"In this case, the value will be empty string.",
)
parser.add_argument(
"--out",
"-O",
type=str,
help="The output filename. " "If omitted, then output to sys.stdout",
)
return parser
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
args.scps = [args.scps]
# logging info
logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
if args.verbose > 0:
logging.basicConfig(level=logging.INFO, format=logfmt)
else:
logging.basicConfig(level=logging.WARN, format=logfmt)
logging.info(get_commandline_args())
# List[List[Tuple[str, str, Callable[[str], Any], str, str]]]
input_infos = []
output_infos = []
infos = []
for lis_list, key_scps_list in [
(input_infos, args.input_scps),
(output_infos, args.output_scps),
(infos, args.scps),
]:
for key_scps in key_scps_list:
lis = []
for key_scp in key_scps:
sps = key_scp.split(":")
if len(sps) == 2:
key, scp = sps
type_func = None
type_func_str = "none"
elif len(sps) == 3:
key, scp, type_func_str = sps
fail = False
try:
# type_func: Callable[[str], Any]
# e.g. type_func_str = "int" -> type_func = int
type_func = eval(type_func_str)
except Exception:
raise RuntimeError("Unknown type: {}".format(type_func_str))
if not callable(type_func):
raise RuntimeError("Unknown type: {}".format(type_func_str))
else:
raise RuntimeError(
"Format <key>:<filepath> "
"or <key>:<filepath>:<type> "
"e.g. feat:data/feat.scp "
"or shape:data/feat.scp:shape: {}".format(key_scp)
)
for item in lis:
if key == item[0]:
raise RuntimeError(
'The key "{}" is duplicated: {} {}'.format(
key, item[3], key_scp
)
)
lis.append((key, scp, type_func, key_scp, type_func_str))
lis_list.append(lis)
# Open scp files
input_fscps = [
[open(i[1], "r", encoding="utf-8") for i in il] for il in input_infos
]
output_fscps = [
[open(i[1], "r", encoding="utf-8") for i in il] for il in output_infos
]
fscps = [[open(i[1], "r", encoding="utf-8") for i in il] for il in infos]
# Note(kamo): What is done here?
# The final goal is creating a JSON file such as.
# {
# "utts": {
# "sample_id1": {(omitted)},
# "sample_id2": {(omitted)},
# ....
# }
# }
#
# To reduce memory usage, reading the input text files for each lines
# and writing JSON elements per samples.
if args.out is None:
out = sys.stdout
else:
out = open(args.out, "w", encoding="utf-8")
out.write('{\n "utts": {\n')
nutt = 0
while True:
nutt += 1
# List[List[str]]
input_lines = [[f.readline() for f in fl] for fl in input_fscps]
output_lines = [[f.readline() for f in fl] for fl in output_fscps]
lines = [[f.readline() for f in fl] for fl in fscps]
# Get the first line
concat = sum(input_lines + output_lines + lines, [])
if len(concat) == 0:
break
first = concat[0]
# Sanity check: Must be sorted by the first column and have same keys
count = 0
for ls_list in (input_lines, output_lines, lines):
for ls in ls_list:
for line in ls:
if line == "" or first == "":
if line != first:
concat = sum(input_infos + output_infos + infos, [])
raise RuntimeError(
"The number of lines mismatch "
'between: "{}" and "{}"'.format(
concat[0][1], concat[count][1]
)
)
elif line.split()[0] != first.split()[0]:
concat = sum(input_infos + output_infos + infos, [])
raise RuntimeError(
"The keys are mismatch at {}th line "
'between "{}" and "{}":\n>>> {}\n>>> {}'.format(
nutt,
concat[0][1],
concat[count][1],
first.rstrip(),
line.rstrip(),
)
)
count += 1
# The end of file
if first == "":
if nutt != 1:
out.write("\n")
break
if nutt != 1:
out.write(",\n")
entry = {}
for inout, _lines, _infos in [
("input", input_lines, input_infos),
("output", output_lines, output_infos),
("other", lines, infos),
]:
lis = []
for idx, (line_list, info_list) in enumerate(zip(_lines, _infos), 1):
if inout == "input":
d = {"name": "input{}".format(idx)}
elif inout == "output":
d = {"name": "target{}".format(idx)}
else:
d = {}
# info_list: List[Tuple[str, str, Callable]]
# line_list: List[str]
for line, info in zip(line_list, info_list):
sps = line.split(None, 1)
if len(sps) < 2:
if not args.allow_one_column:
raise RuntimeError(
"Format error {}th line in {}: "
' Expecting "<key> <value>":\n>>> {}'.format(
nutt, info[1], line
)
)
uttid = sps[0]
value = ""
else:
uttid, value = sps
key = info[0]
type_func = info[2]
value = value.rstrip()
if type_func is not None:
try:
# type_func: Callable[[str], Any]
value = type_func(value)
except Exception:
logging.error(
'"{}" is an invalid function '
"for the {} th line in {}: \n>>> {}".format(
info[4], nutt, info[1], line
)
)
raise
d[key] = value
lis.append(d)
if inout != "other":
entry[inout] = lis
else:
# If key == 'other'. only has the first item
entry.update(lis[0])
entry = json.dumps(
entry, indent=4, ensure_ascii=False, sort_keys=True, separators=(",", ": ")
)
# Add indent
indent = " " * 2
entry = ("\n" + indent).join(entry.split("\n"))
uttid = first.split()[0]
out.write(' "{}": {}'.format(uttid, entry))
out.write(" }\n}\n")
logging.info("{} entries in {}".format(nutt, out.name))

@ -0,0 +1,59 @@
#!/usr/bin/env bash
# koried, 10/29/2012
# Reduce a data set based on a list of turn-ids
help_message="usage: $0 srcdir turnlist destdir"
if [ $1 == "--help" ]; then
echo "${help_message}"
exit 0;
fi
if [ $# != 3 ]; then
echo "${help_message}"
exit 1;
fi
srcdir=$1
reclist=$2
destdir=$3
if [ ! -f ${srcdir}/utt2spk ]; then
echo "$0: no such file $srcdir/utt2spk"
exit 1;
fi
function do_filtering {
# assumes the utt2spk and spk2utt files already exist.
[ -f ${srcdir}/feats.scp ] && utils/filter_scp.pl ${destdir}/utt2spk <${srcdir}/feats.scp >${destdir}/feats.scp
[ -f ${srcdir}/wav.scp ] && utils/filter_scp.pl ${destdir}/utt2spk <${srcdir}/wav.scp >${destdir}/wav.scp
[ -f ${srcdir}/text ] && utils/filter_scp.pl ${destdir}/utt2spk <${srcdir}/text >${destdir}/text
[ -f ${srcdir}/utt2num_frames ] && utils/filter_scp.pl ${destdir}/utt2spk <${srcdir}/utt2num_frames >${destdir}/utt2num_frames
[ -f ${srcdir}/spk2gender ] && utils/filter_scp.pl ${destdir}/spk2utt <${srcdir}/spk2gender >${destdir}/spk2gender
[ -f ${srcdir}/cmvn.scp ] && utils/filter_scp.pl ${destdir}/spk2utt <${srcdir}/cmvn.scp >${destdir}/cmvn.scp
if [ -f ${srcdir}/segments ]; then
utils/filter_scp.pl ${destdir}/utt2spk <${srcdir}/segments >${destdir}/segments
awk '{print $2;}' ${destdir}/segments | sort | uniq > ${destdir}/reco # recordings.
# The next line would override the command above for wav.scp, which would be incorrect.
[ -f ${srcdir}/wav.scp ] && utils/filter_scp.pl ${destdir}/reco <${srcdir}/wav.scp >${destdir}/wav.scp
[ -f ${srcdir}/reco2file_and_channel ] && \
utils/filter_scp.pl ${destdir}/reco <${srcdir}/reco2file_and_channel >${destdir}/reco2file_and_channel
# Filter the STM file for proper sclite scoring (this will also remove the comments lines)
[ -f ${srcdir}/stm ] && utils/filter_scp.pl ${destdir}/reco < ${srcdir}/stm > ${destdir}/stm
rm ${destdir}/reco
fi
srcutts=$(wc -l < ${srcdir}/utt2spk)
destutts=$(wc -l < ${destdir}/utt2spk)
echo "Reduced #utt from $srcutts to $destutts"
}
mkdir -p ${destdir}
# filter the utt2spk based on the set of recordings
utils/filter_scp.pl ${reclist} < ${srcdir}/utt2spk > ${destdir}/utt2spk
utils/utt2spk_to_spk2utt.pl < ${destdir}/utt2spk > ${destdir}/spk2utt
do_filtering;

@ -0,0 +1,62 @@
#!/usr/bin/env bash
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
. ./path.sh
maxframes=2000
minframes=10
maxchars=200
minchars=0
nlsyms=""
no_feat=false
trans_type=char
help_message="usage: $0 olddatadir newdatadir"
. utils/parse_options.sh || exit 1;
if [ $# != 2 ]; then
echo "${help_message}"
exit 1;
fi
sdir=$1
odir=$2
mkdir -p ${odir}/tmp
if [ ${no_feat} = true ]; then
# for machine translation
cut -d' ' -f 1 ${sdir}/text > ${odir}/tmp/reclist1
else
echo "extract utterances having less than $maxframes or more than $minframes frames"
utils/data/get_utt2num_frames.sh ${sdir}
< ${sdir}/utt2num_frames awk -v maxframes="$maxframes" '{ if ($2 < maxframes) print }' \
| awk -v minframes="$minframes" '{ if ($2 > minframes) print }' \
| awk '{print $1}' > ${odir}/tmp/reclist1
fi
echo "extract utterances having less than $maxchars or more than $minchars characters"
# counting number of chars. Use (NF - 1) instead of NF to exclude the utterance ID column
if [ -z ${nlsyms} ]; then
text2token.py -s 1 -n 1 ${sdir}/text --trans_type ${trans_type} \
| awk -v maxchars="$maxchars" '{ if (NF - 1 < maxchars) print }' \
| awk -v minchars="$minchars" '{ if (NF - 1 > minchars) print }' \
| awk '{print $1}' > ${odir}/tmp/reclist2
else
text2token.py -l ${nlsyms} -s 1 -n 1 ${sdir}/text --trans_type ${trans_type} \
| awk -v maxchars="$maxchars" '{ if (NF - 1 < maxchars) print }' \
| awk -v minchars="$minchars" '{ if (NF - 1 > minchars) print }' \
| awk '{print $1}' > ${odir}/tmp/reclist2
fi
# extract common lines
comm -12 <(sort ${odir}/tmp/reclist1) <(sort ${odir}/tmp/reclist2) > ${odir}/tmp/reclist
reduce_data_dir.sh ${sdir} ${odir}/tmp/reclist ${odir}
utils/fix_data_dir.sh ${odir}
oldnum=$(wc -l ${sdir}/feats.scp | awk '{print $1}')
newnum=$(wc -l ${odir}/feats.scp | awk '{print $1}')
echo "change from $oldnum to $newnum"

@ -0,0 +1,135 @@
#!/usr/bin/env python3
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import argparse
import codecs
import re
import sys
is_python2 = sys.version_info[0] == 2
def exist_or_not(i, match_pos):
start_pos = None
end_pos = None
for pos in match_pos:
if pos[0] <= i < pos[1]:
start_pos = pos[0]
end_pos = pos[1]
break
return start_pos, end_pos
def get_parser():
parser = argparse.ArgumentParser(
description="convert raw text to tokenized text",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--nchar",
"-n",
default=1,
type=int,
help="number of characters to split, i.e., \
aabb -> a a b b with -n 1 and aa bb with -n 2",
)
parser.add_argument(
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
)
parser.add_argument("--space", default="<space>", type=str, help="space symbol")
parser.add_argument(
"--non-lang-syms",
"-l",
default=None,
type=str,
help="list of non-linguistic symobles, e.g., <NOISE> etc.",
)
parser.add_argument("text", type=str, default=False, nargs="?", help="input text")
parser.add_argument(
"--trans_type",
"-t",
type=str,
default="char",
choices=["char", "phn"],
help="""Transcript type. char/phn. e.g., for TIMIT FADG0_SI1279 -
If trans_type is char,
read from SI1279.WRD file -> "bricks are an alternative"
Else if trans_type is phn,
read from SI1279.PHN file -> "sil b r ih sil k s aa r er n aa l
sil t er n ih sil t ih v sil" """,
)
return parser
def main():
parser = get_parser()
args = parser.parse_args()
rs = []
if args.non_lang_syms is not None:
with codecs.open(args.non_lang_syms, "r", encoding="utf-8") as f:
nls = [x.rstrip() for x in f.readlines()]
rs = [re.compile(re.escape(x)) for x in nls]
if args.text:
f = codecs.open(args.text, encoding="utf-8")
else:
f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer)
sys.stdout = codecs.getwriter("utf-8")(
sys.stdout if is_python2 else sys.stdout.buffer
)
line = f.readline()
n = args.nchar
while line:
x = line.split()
print(" ".join(x[: args.skip_ncols]), end=" ")
a = " ".join(x[args.skip_ncols :])
# get all matched positions
match_pos = []
for r in rs:
i = 0
while i >= 0:
m = r.search(a, i)
if m:
match_pos.append([m.start(), m.end()])
i = m.end()
else:
break
if args.trans_type == "phn":
a = a.split(" ")
else:
if len(match_pos) > 0:
chars = []
i = 0
while i < len(a):
start_pos, end_pos = exist_or_not(i, match_pos)
if start_pos is not None:
chars.append(a[start_pos:end_pos])
i = end_pos
else:
chars.append(a[i])
i += 1
a = chars
a = [a[j : j + n] for j in range(0, len(a), n)]
a_flat = []
for z in a:
a_flat.append("".join(z))
a_chars = [z.replace(" ", args.space) for z in a_flat]
if args.trans_type == "phn":
a_chars = [z.replace("sil", args.space) for z in a_chars]
print(" ".join(a_chars))
line = f.readline()
if __name__ == "__main__":
main()
Loading…
Cancel
Save