parent
7b649af8d7
commit
86e42f3d21
@ -0,0 +1,177 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from paddle.io import DataLoader
|
||||
|
||||
from deepspeech.frontend.utility import read_manifest
|
||||
from deepspeech.io.batchfy import make_batchset
|
||||
from deepspeech.io.dataset import TransformDataset
|
||||
from deepspeech.io.utility import LoadInputsAndTargets
|
||||
from deepspeech.io.utility import pad_list
|
||||
from deepspeech.utils.log import Log
|
||||
|
||||
__all__ = ["CustomConverter", "BatchDataLoader"]
|
||||
|
||||
logger = Log(__name__).getlog()
|
||||
|
||||
|
||||
class CustomConverter():
|
||||
"""Custom batch converter.
|
||||
|
||||
Args:
|
||||
subsampling_factor (int): The subsampling factor.
|
||||
dtype (paddle.dtype): Data type to convert.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, subsampling_factor=1, dtype=paddle.float32):
|
||||
"""Construct a CustomConverter object."""
|
||||
self.subsampling_factor = subsampling_factor
|
||||
self.ignore_id = -1
|
||||
self.dtype = dtype
|
||||
|
||||
def __call__(self, batch):
|
||||
"""Transform a batch and send it to a device.
|
||||
|
||||
Args:
|
||||
batch (list): The batch to transform.
|
||||
|
||||
Returns:
|
||||
tuple(paddle.Tensor, paddle.Tensor, paddle.Tensor)
|
||||
|
||||
"""
|
||||
# batch should be located in list
|
||||
assert len(batch) == 1
|
||||
xs, ys = batch[0]
|
||||
|
||||
# perform subsampling
|
||||
if self.subsampling_factor > 1:
|
||||
xs = [x[::self.subsampling_factor, :] for x in xs]
|
||||
|
||||
# get batch of lengths of input sequences
|
||||
ilens = np.array([x.shape[0] for x in xs])
|
||||
|
||||
# perform padding and convert to tensor
|
||||
# currently only support real number
|
||||
if xs[0].dtype.kind == "c":
|
||||
xs_pad_real = pad_list([x.real for x in xs], 0).astype(self.dtype)
|
||||
xs_pad_imag = pad_list([x.imag for x in xs], 0).astype(self.dtype)
|
||||
# Note(kamo):
|
||||
# {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
|
||||
# Don't create ComplexTensor and give it E2E here
|
||||
# because torch.nn.DataParellel can't handle it.
|
||||
xs_pad = {"real": xs_pad_real, "imag": xs_pad_imag}
|
||||
else:
|
||||
xs_pad = pad_list(xs, 0).astype(self.dtype)
|
||||
|
||||
ilens = paddle.to_tensor(ilens)
|
||||
|
||||
# NOTE: this is for multi-output (e.g., speech translation)
|
||||
ys_pad = pad_list(
|
||||
[np.array(y[0][:]) if isinstance(y, tuple) else y for y in ys],
|
||||
self.ignore_id)
|
||||
|
||||
olens = np.array([y.shape[0] for y in ys])
|
||||
return xs_pad, ilens, ys_pad, olens
|
||||
|
||||
|
||||
class BatchDataLoader():
|
||||
def __init__(self,
|
||||
json_file: str,
|
||||
train_mode: bool,
|
||||
sortagrad: bool=False,
|
||||
batch_size: int=0,
|
||||
maxlen_in: float=float('inf'),
|
||||
maxlen_out: float=float('inf'),
|
||||
minibatches: int=0,
|
||||
mini_batch_size: int=1,
|
||||
batch_count: str='auto',
|
||||
batch_bins: int=0,
|
||||
batch_frames_in: int=0,
|
||||
batch_frames_out: int=0,
|
||||
batch_frames_inout: int=0,
|
||||
preprocess_conf=None,
|
||||
n_iter_processes: int=1,
|
||||
subsampling_factor: int=1,
|
||||
num_encs: int=1):
|
||||
self.json_file = json_file
|
||||
self.train_mode = train_mode
|
||||
|
||||
self.use_sortagrad = sortagrad == -1 or sortagrad > 0
|
||||
self.batch_size = batch_size
|
||||
self.maxlen_in = maxlen_in
|
||||
self.maxlen_out = maxlen_out
|
||||
self.batch_count = batch_count
|
||||
self.batch_bins = batch_bins
|
||||
self.batch_frames_in = batch_frames_in
|
||||
self.batch_frames_out = batch_frames_out
|
||||
self.batch_frames_inout = batch_frames_inout
|
||||
|
||||
self.subsampling_factor = subsampling_factor
|
||||
self.num_encs = num_encs
|
||||
self.preprocess_conf = preprocess_conf
|
||||
|
||||
self.n_iter_processes = n_iter_processes
|
||||
|
||||
# read json data
|
||||
data_json = read_manifest(json_file)
|
||||
logger.info(f"load {json_file} file.")
|
||||
|
||||
# make minibatch list (variable length)
|
||||
self.data = make_batchset(
|
||||
data_json,
|
||||
batch_size,
|
||||
maxlen_in,
|
||||
maxlen_out,
|
||||
minibatches, # for debug
|
||||
min_batch_size=mini_batch_size,
|
||||
shortest_first=self.use_sortagrad,
|
||||
count=batch_count,
|
||||
batch_bins=batch_bins,
|
||||
batch_frames_in=batch_frames_in,
|
||||
batch_frames_out=batch_frames_out,
|
||||
batch_frames_inout=batch_frames_inout,
|
||||
iaxis=0,
|
||||
oaxis=0, )
|
||||
logger.info(f"batchfy data {json_file}: {len(self.data)}.")
|
||||
|
||||
self.load = LoadInputsAndTargets(
|
||||
mode="asr",
|
||||
load_output=True,
|
||||
preprocess_conf=preprocess_conf,
|
||||
preprocess_args={"train":
|
||||
train_mode}, # Switch the mode of preprocessing
|
||||
)
|
||||
|
||||
# Setup a converter
|
||||
if num_encs == 1:
|
||||
self.converter = CustomConverter(
|
||||
subsampling_factor=subsampling_factor, dtype=dtype)
|
||||
else:
|
||||
assert NotImplementedError("not impl CustomConverterMulEnc.")
|
||||
|
||||
# hack to make batchsize argument as 1
|
||||
# actual bathsize is included in a list
|
||||
# default collate function converts numpy array to pytorch tensor
|
||||
# we used an empty collate function instead which returns list
|
||||
self.train_loader = DataLoader(
|
||||
dataset=TransformDataset(
|
||||
self.data, lambda data: self.converter([self.load(data)])),
|
||||
batch_size=1,
|
||||
shuffle=not use_sortagrad if train_mode else False,
|
||||
collate_fn=lambda x: x[0],
|
||||
num_workers=n_iter_processes, )
|
||||
logger.info(f"dataloader for {json_file}.")
|
||||
|
||||
def __repr__(self):
|
||||
return f"DataLoader {self.json_file}-{self.train_mode}-{self.use_sortagrad}"
|
Loading…
Reference in new issue