|
|
@ -27,7 +27,8 @@ add_arg('num_batches', int, -1, "# of batches tuning on. "
|
|
|
|
add_arg('batch_size', int, 256, "# of samples per batch.")
|
|
|
|
add_arg('batch_size', int, 256, "# of samples per batch.")
|
|
|
|
add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).")
|
|
|
|
add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).")
|
|
|
|
add_arg('beam_size', int, 500, "Beam search width.")
|
|
|
|
add_arg('beam_size', int, 500, "Beam search width.")
|
|
|
|
add_arg('num_proc_bsearch', int, 12, "# of CPUs for beam search.")
|
|
|
|
add_arg('num_proc_bsearch', int, 8, "# of CPUs for beam search.")
|
|
|
|
|
|
|
|
add_arg('num_proc_data', int, 8, "# of CPUs for data preprocessing.")
|
|
|
|
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
|
|
|
|
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
|
|
|
|
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
|
|
|
|
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
|
|
|
|
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
|
|
|
|
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
|
|
|
@ -86,7 +87,7 @@ def tune():
|
|
|
|
mean_std_filepath=args.mean_std_path,
|
|
|
|
mean_std_filepath=args.mean_std_path,
|
|
|
|
augmentation_config='{}',
|
|
|
|
augmentation_config='{}',
|
|
|
|
specgram_type=args.specgram_type,
|
|
|
|
specgram_type=args.specgram_type,
|
|
|
|
num_threads=1)
|
|
|
|
num_threads=args.num_proc_data)
|
|
|
|
|
|
|
|
|
|
|
|
audio_data = paddle.layer.data(
|
|
|
|
audio_data = paddle.layer.data(
|
|
|
|
name="audio_spectrogram",
|
|
|
|
name="audio_spectrogram",
|
|
|
|