Merge pull request #2015 from zh794390558/endpoint

[server][asr] support endpoint for conformer streaming model
pull/2016/head
YangZhou 3 years ago committed by GitHub
commit 8641608f08
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -51,12 +51,12 @@ repos:
language: system language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|cuh|proto)$ files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|cuh|proto)$
exclude: (?=speechx/speechx/kaldi|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin).*(\.cpp|\.cc|\.h|\.py)$ exclude: (?=speechx/speechx/kaldi|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin).*(\.cpp|\.cc|\.h|\.py)$
- id: copyright_checker #- id: copyright_checker
name: copyright_checker # name: copyright_checker
entry: python .pre-commit-hooks/copyright-check.hook # entry: python .pre-commit-hooks/copyright-check.hook
language: system # language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$ # files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$
exclude: (?=third_party|pypinyin|speechx/speechx/kaldi|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin).*(\.cpp|\.cc|\.h|\.py)$ # exclude: (?=third_party|pypinyin|speechx/speechx/kaldi|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin).*(\.cpp|\.cc|\.h|\.py)$
- repo: https://github.com/asottile/reorder_python_imports - repo: https://github.com/asottile/reorder_python_imports
rev: v2.4.0 rev: v2.4.0
hooks: hooks:

@ -31,6 +31,8 @@ asr_online:
force_yes: True force_yes: True
device: 'cpu' # cpu or gpu:id device: 'cpu' # cpu or gpu:id
decode_method: "attention_rescoring" decode_method: "attention_rescoring"
continuous_decoding: True # enable continue decoding when endpoint detected
am_predictor_conf: am_predictor_conf:
device: # set 'gpu:id' or 'cpu' device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True switch_ir_optim: True

@ -30,6 +30,9 @@ asr_online:
decode_method: decode_method:
force_yes: True force_yes: True
device: 'cpu' # cpu or gpu:id device: 'cpu' # cpu or gpu:id
decode_method: "attention_rescoring"
continuous_decoding: True # enable continue decoding when endpoint detected
am_predictor_conf: am_predictor_conf:
device: # set 'gpu:id' or 'cpu' device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True switch_ir_optim: True

@ -31,6 +31,8 @@ asr_online:
force_yes: True force_yes: True
device: 'cpu' # cpu or gpu:id device: 'cpu' # cpu or gpu:id
decode_method: "attention_rescoring" decode_method: "attention_rescoring"
continuous_decoding: True # enable continue decoding when endpoint detected
am_predictor_conf: am_predictor_conf:
device: # set 'gpu:id' or 'cpu' device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True switch_ir_optim: True

@ -6,3 +6,4 @@ paddlespeech_server start --config_file conf/punc_application.yaml &> punc.log &
# nohup python3 streaming_asr_server.py --config_file conf/ws_conformer_application.yaml > streaming_asr.log 2>&1 & # nohup python3 streaming_asr_server.py --config_file conf/ws_conformer_application.yaml > streaming_asr.log 2>&1 &
paddlespeech_server start --config_file conf/ws_conformer_application.yaml &> streaming_asr.log & paddlespeech_server start --config_file conf/ws_conformer_application.yaml &> streaming_asr.log &

@ -10,3 +10,4 @@ paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8290 --input ./zh.wa
# If `127.0.0.1` is not accessible, you need to use the actual service IP address. # If `127.0.0.1` is not accessible, you need to use the actual service IP address.
# python3 websocket_client.py --server_ip 127.0.0.1 --port 8290 --punc.server_ip 127.0.0.1 --punc.port 8190 --wavfile ./zh.wav # python3 websocket_client.py --server_ip 127.0.0.1 --port 8290 --punc.server_ip 127.0.0.1 --punc.port 8190 --wavfile ./zh.wav
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8290 --punc.server_ip 127.0.0.1 --punc.port 8190 --input ./zh.wav paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8290 --punc.server_ip 127.0.0.1 --punc.port 8190 --input ./zh.wav

@ -13,7 +13,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import argparse import argparse
import json import json
import os import os

@ -145,4 +145,3 @@ for com, info in _commands.items():
name='paddlespeech.{}'.format(com), name='paddlespeech.{}'.format(com),
description=info[0], description=info[0],
cls='paddlespeech.cli.{}.{}'.format(com, info[1])) cls='paddlespeech.cli.{}.{}'.format(com, info[1]))

@ -21,12 +21,12 @@ from typing import Union
import numpy as np import numpy as np
import paddle import paddle
import yaml import yaml
from paddleaudio import load
from paddleaudio.features import LogMelSpectrogram
from ..executor import BaseExecutor from ..executor import BaseExecutor
from ..log import logger from ..log import logger
from ..utils import stats_wrapper from ..utils import stats_wrapper
from paddleaudio import load
from paddleaudio.features import LogMelSpectrogram
__all__ = ['CLSExecutor'] __all__ = ['CLSExecutor']

@ -22,13 +22,13 @@ from typing import Union
import paddle import paddle
import soundfile import soundfile
from paddleaudio.backends import load as load_audio
from paddleaudio.compliance.librosa import melspectrogram
from yacs.config import CfgNode from yacs.config import CfgNode
from ..executor import BaseExecutor from ..executor import BaseExecutor
from ..log import logger from ..log import logger
from ..utils import stats_wrapper from ..utils import stats_wrapper
from paddleaudio.backends import load as load_audio
from paddleaudio.compliance.librosa import melspectrogram
from paddlespeech.vector.io.batch import feature_normalize from paddlespeech.vector.io.batch import feature_normalize
from paddlespeech.vector.modules.sid_model import SpeakerIdetification from paddlespeech.vector.modules.sid_model import SpeakerIdetification

@ -22,8 +22,7 @@ model_alias = {
# -------------- ASR -------------- # -------------- ASR --------------
# --------------------------------- # ---------------------------------
"deepspeech2offline": ["paddlespeech.s2t.models.ds2:DeepSpeech2Model"], "deepspeech2offline": ["paddlespeech.s2t.models.ds2:DeepSpeech2Model"],
"deepspeech2online": "deepspeech2online": ["paddlespeech.s2t.models.ds2:DeepSpeech2Model"],
["paddlespeech.s2t.models.ds2:DeepSpeech2Model"],
"conformer": ["paddlespeech.s2t.models.u2:U2Model"], "conformer": ["paddlespeech.s2t.models.u2:U2Model"],
"conformer_online": ["paddlespeech.s2t.models.u2:U2Model"], "conformer_online": ["paddlespeech.s2t.models.u2:U2Model"],
"transformer": ["paddlespeech.s2t.models.u2:U2Model"], "transformer": ["paddlespeech.s2t.models.u2:U2Model"],

@ -76,7 +76,8 @@ class CTCPrefixScorePD():
last_ids = [yi[-1] for yi in y] # last output label ids last_ids = [yi[-1] for yi in y] # last output label ids
n_bh = len(last_ids) # batch * hyps n_bh = len(last_ids) # batch * hyps
n_hyps = n_bh // self.batch # assuming each utterance has the same # of hyps n_hyps = n_bh // self.batch # assuming each utterance has the same # of hyps
self.scoring_num = paddle.shape(scoring_ids)[-1] if scoring_ids is not None else 0 self.scoring_num = paddle.shape(scoring_ids)[
-1] if scoring_ids is not None else 0
# prepare state info # prepare state info
if state is None: if state is None:
r_prev = paddle.full( r_prev = paddle.full(

@ -22,11 +22,9 @@ import numpy as np
import paddle import paddle
from paddle import distributed as dist from paddle import distributed as dist
from paddle import inference from paddle import inference
from paddle.io import DataLoader
from paddlespeech.s2t.io.dataloader import BatchDataLoader
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.io.dataset import ManifestDataset from paddlespeech.s2t.io.dataloader import BatchDataLoader
from paddlespeech.s2t.models.ds2 import DeepSpeech2InferModel from paddlespeech.s2t.models.ds2 import DeepSpeech2InferModel
from paddlespeech.s2t.models.ds2 import DeepSpeech2Model from paddlespeech.s2t.models.ds2 import DeepSpeech2Model
from paddlespeech.s2t.training.gradclip import ClipGradByGlobalNormWithLog from paddlespeech.s2t.training.gradclip import ClipGradByGlobalNormWithLog
@ -238,8 +236,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def __init__(self, config, args): def __init__(self, config, args):
super().__init__(config, args) super().__init__(config, args)
self._text_featurizer = TextFeaturizer( self._text_featurizer = TextFeaturizer(
unit_type=config.unit_type, unit_type=config.unit_type, vocab=config.vocab_filepath)
vocab=config.vocab_filepath)
self.vocab_list = self._text_featurizer.vocab_list self.vocab_list = self._text_featurizer.vocab_list
def ordid2token(self, texts, texts_len): def ordid2token(self, texts, texts_len):
@ -248,7 +245,8 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
for text, n in zip(texts, texts_len): for text, n in zip(texts, texts_len):
n = n.numpy().item() n = n.numpy().item()
ids = text[:n] ids = text[:n]
trans.append(self._text_featurizer.defeaturize(ids.numpy().tolist())) trans.append(
self._text_featurizer.defeaturize(ids.numpy().tolist()))
return trans return trans
def compute_metrics(self, def compute_metrics(self,

@ -11,10 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import sys
from .deepspeech2 import DeepSpeech2InferModel from .deepspeech2 import DeepSpeech2InferModel
from .deepspeech2 import DeepSpeech2Model from .deepspeech2 import DeepSpeech2Model
from paddlespeech.s2t.utils import dynamic_pip_install from paddlespeech.s2t.utils import dynamic_pip_install
import sys
try: try:
import paddlespeech_ctcdecoders import paddlespeech_ctcdecoders

@ -372,11 +372,15 @@ class DeepSpeech2InferModel(DeepSpeech2Model):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
def forward(self, audio_chunk, audio_chunk_lens, chunk_state_h_box=None, def forward(self,
audio_chunk,
audio_chunk_lens,
chunk_state_h_box=None,
chunk_state_c_box=None): chunk_state_c_box=None):
if self.encoder.rnn_direction == "forward": if self.encoder.rnn_direction == "forward":
eouts_chunk, eouts_chunk_lens, final_state_h_box, final_state_c_box = self.encoder( eouts_chunk, eouts_chunk_lens, final_state_h_box, final_state_c_box = self.encoder(
audio_chunk, audio_chunk_lens, chunk_state_h_box, chunk_state_c_box) audio_chunk, audio_chunk_lens, chunk_state_h_box,
chunk_state_c_box)
probs_chunk = self.decoder.softmax(eouts_chunk) probs_chunk = self.decoder.softmax(eouts_chunk)
return probs_chunk, eouts_chunk_lens, final_state_h_box, final_state_c_box return probs_chunk, eouts_chunk_lens, final_state_h_box, final_state_c_box
elif self.encoder.rnn_direction == "bidirect": elif self.encoder.rnn_direction == "bidirect":
@ -392,8 +396,8 @@ class DeepSpeech2InferModel(DeepSpeech2Model):
self, self,
input_spec=[ input_spec=[
paddle.static.InputSpec( paddle.static.InputSpec(
shape=[None, None, shape=[None, None, self.encoder.feat_size
self.encoder.feat_size], #[B, chunk_size, feat_dim] ], #[B, chunk_size, feat_dim]
dtype='float32'), dtype='float32'),
paddle.static.InputSpec(shape=[None], paddle.static.InputSpec(shape=[None],
dtype='int64'), # audio_length, [B] dtype='int64'), # audio_length, [B]

@ -90,7 +90,7 @@ class TransformerLM(nn.Layer, LMInterface, BatchScorerInterface):
def _target_mask(self, ys_in_pad): def _target_mask(self, ys_in_pad):
ys_mask = ys_in_pad != 0 ys_mask = ys_in_pad != 0
m = subsequent_mask(paddle.shape(ys_mask)[-1])).unsqueeze(0) m = subsequent_mask(paddle.shape(ys_mask)[-1]).unsqueeze(0)
return ys_mask.unsqueeze(-2) & m return ys_mask.unsqueeze(-2) & m
def forward(self, x: paddle.Tensor, t: paddle.Tensor def forward(self, x: paddle.Tensor, t: paddle.Tensor

@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from contextlib import nullcontext from contextlib import nullcontext
import paddle import paddle

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import sys
from typing import Union from typing import Union
import paddle import paddle
@ -22,7 +23,6 @@ from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.modules.loss import CTCLoss from paddlespeech.s2t.modules.loss import CTCLoss
from paddlespeech.s2t.utils import ctc_utils from paddlespeech.s2t.utils import ctc_utils
from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.log import Log
import sys
logger = Log(__name__).getlog() logger = Log(__name__).getlog()

@ -82,7 +82,8 @@ def pad_sequence(sequences: List[paddle.Tensor],
max_size = paddle.shape(sequences[0]) max_size = paddle.shape(sequences[0])
# (TODO Hui Zhang): slice not supprot `end==start` # (TODO Hui Zhang): slice not supprot `end==start`
# trailing_dims = max_size[1:] # trailing_dims = max_size[1:]
trailing_dims = tuple(max_size[1:].numpy().tolist()) if sequences[0].ndim >= 2 else () trailing_dims = tuple(
max_size[1:].numpy().tolist()) if sequences[0].ndim >= 2 else ()
max_len = max([s.shape[0] for s in sequences]) max_len = max([s.shape[0] for s in sequences])
if batch_first: if batch_first:
out_dims = (len(sequences), max_len) + trailing_dims out_dims = (len(sequences), max_len) + trailing_dims

@ -29,6 +29,7 @@ asr_online:
cfg_path: cfg_path:
decode_method: decode_method:
force_yes: True force_yes: True
device: # cpu or gpu:id
am_predictor_conf: am_predictor_conf:
device: # set 'gpu:id' or 'cpu' device: # set 'gpu:id' or 'cpu'

@ -30,6 +30,8 @@ asr_online:
decode_method: decode_method:
force_yes: True force_yes: True
device: # cpu or gpu:id device: # cpu or gpu:id
continuous_decoding: True # enable continue decoding when endpoint detected
am_predictor_conf: am_predictor_conf:
device: # set 'gpu:id' or 'cpu' device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True switch_ir_optim: True

@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
import os import os
import sys import sys
from typing import ByteString
from typing import Optional from typing import Optional
import numpy as np import numpy as np
@ -30,9 +31,10 @@ from paddlespeech.s2t.transform.transformation import Transformation
from paddlespeech.s2t.utils.tensor_utils import add_sos_eos from paddlespeech.s2t.utils.tensor_utils import add_sos_eos
from paddlespeech.s2t.utils.tensor_utils import pad_sequence from paddlespeech.s2t.utils.tensor_utils import pad_sequence
from paddlespeech.s2t.utils.utility import UpdateConfig from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.server.engine.asr.online.ctc_endpoint import OnlineCTCEndpoingOpt
from paddlespeech.server.engine.asr.online.ctc_endpoint import OnlineCTCEndpoint
from paddlespeech.server.engine.asr.online.ctc_search import CTCPrefixBeamSearch from paddlespeech.server.engine.asr.online.ctc_search import CTCPrefixBeamSearch
from paddlespeech.server.engine.base_engine import BaseEngine from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils.audio_process import pcm2float
from paddlespeech.server.utils.paddle_predictor import init_predictor from paddlespeech.server.utils.paddle_predictor import init_predictor
__all__ = ['PaddleASRConnectionHanddler', 'ASRServerExecutor', 'ASREngine'] __all__ = ['PaddleASRConnectionHanddler', 'ASRServerExecutor', 'ASREngine']
@ -54,24 +56,35 @@ class PaddleASRConnectionHanddler:
self.model_config = asr_engine.executor.config self.model_config = asr_engine.executor.config
self.asr_engine = asr_engine self.asr_engine = asr_engine
self.init()
self.reset()
def init(self):
# model_type, sample_rate and text_feature is shared for deepspeech2 and conformer # model_type, sample_rate and text_feature is shared for deepspeech2 and conformer
self.model_type = self.asr_engine.executor.model_type self.model_type = self.asr_engine.executor.model_type
self.sample_rate = self.asr_engine.executor.sample_rate self.sample_rate = self.asr_engine.executor.sample_rate
# tokens to text # tokens to text
self.text_feature = self.asr_engine.executor.text_feature self.text_feature = self.asr_engine.executor.text_feature
# extract feat, new only fbank in conformer model
self.preprocess_conf = self.model_config.preprocess_config
self.preprocess_args = {"train": False}
self.preprocessing = Transformation(self.preprocess_conf)
# frame window and frame shift, in samples unit
self.win_length = self.preprocess_conf.process[0]['win_length']
self.n_shift = self.preprocess_conf.process[0]['n_shift']
assert self.preprocess_conf.process[0]['fs'] == self.sample_rate, (
self.sample_rate, self.preprocess_conf.process[0]['fs'])
self.frame_shift_in_ms = int(
self.n_shift / self.preprocess_conf.process[0]['fs'] * 1000)
self.continuous_decoding = self.config.get("continuous_decoding", False)
self.init_decoder()
self.reset()
def init_decoder(self):
if "deepspeech2" in self.model_type: if "deepspeech2" in self.model_type:
assert self.continuous_decoding is False, "ds2 model not support endpoint"
self.am_predictor = self.asr_engine.executor.am_predictor self.am_predictor = self.asr_engine.executor.am_predictor
# extract feat, new only fbank in conformer model
self.preprocess_conf = self.model_config.preprocess_config
self.preprocess_args = {"train": False}
self.preprocessing = Transformation(self.preprocess_conf)
self.decoder = CTCDecoder( self.decoder = CTCDecoder(
odim=self.model_config.output_dim, # <blank> is in vocab odim=self.model_config.output_dim, # <blank> is in vocab
enc_n_units=self.model_config.rnn_layer_size * 2, enc_n_units=self.model_config.rnn_layer_size * 2,
@ -90,142 +103,65 @@ class PaddleASRConnectionHanddler:
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n, cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch) cfg.num_proc_bsearch)
# frame window and frame shift, in samples unit
self.win_length = self.preprocess_conf.process[0]['win_length']
self.n_shift = self.preprocess_conf.process[0]['n_shift']
elif "conformer" in self.model_type or "transformer" in self.model_type: elif "conformer" in self.model_type or "transformer" in self.model_type:
# acoustic model # acoustic model
self.model = self.asr_engine.executor.model self.model = self.asr_engine.executor.model
self.continuous_decoding = self.config.continuous_decoding
logger.info(f"continue decoding: {self.continuous_decoding}")
# ctc decoding config # ctc decoding config
self.ctc_decode_config = self.asr_engine.executor.config.decode self.ctc_decode_config = self.asr_engine.executor.config.decode
self.searcher = CTCPrefixBeamSearch(self.ctc_decode_config) self.searcher = CTCPrefixBeamSearch(self.ctc_decode_config)
# extract feat, new only fbank in conformer model # ctc endpoint
self.preprocess_conf = self.model_config.preprocess_config self.endpoint_opt = OnlineCTCEndpoingOpt(
self.preprocess_args = {"train": False} frame_shift_in_ms=self.frame_shift_in_ms, blank=0)
self.preprocessing = Transformation(self.preprocess_conf) self.endpointer = OnlineCTCEndpoint(self.endpoint_opt)
# frame window and frame shift, in samples unit
self.win_length = self.preprocess_conf.process[0]['win_length']
self.n_shift = self.preprocess_conf.process[0]['n_shift']
else: else:
raise ValueError(f"Not supported: {self.model_type}") raise ValueError(f"Not supported: {self.model_type}")
def extract_feat(self, samples): def model_reset(self):
# we compute the elapsed time of first char occuring if "deepspeech2" in self.model_type:
# and we record the start time at the first pcm sample arraving return
if "deepspeech2online" in self.model_type:
# self.reamined_wav stores all the samples,
# include the original remained_wav and this package samples
samples = np.frombuffer(samples, dtype=np.int16)
assert samples.ndim == 1
if self.remained_wav is None:
self.remained_wav = samples
else:
assert self.remained_wav.ndim == 1
self.remained_wav = np.concatenate([self.remained_wav, samples])
logger.info(
f"The connection remain the audio samples: {self.remained_wav.shape}"
)
# fbank
feat = self.preprocessing(self.remained_wav,
**self.preprocess_args)
feat = paddle.to_tensor(
feat, dtype="float32").unsqueeze(axis=0)
if self.cached_feat is None:
self.cached_feat = feat
else:
assert (len(feat.shape) == 3)
assert (len(self.cached_feat.shape) == 3)
self.cached_feat = paddle.concat(
[self.cached_feat, feat], axis=1)
# set the feat device
if self.device is None:
self.device = self.cached_feat.place
# cur frame step
num_frames = feat.shape[1]
self.num_frames += num_frames
self.remained_wav = self.remained_wav[self.n_shift * num_frames:]
logger.info(
f"process the audio feature success, the connection feat shape: {self.cached_feat.shape}"
)
logger.info(
f"After extract feat, the connection remain the audio samples: {self.remained_wav.shape}"
)
elif "conformer_online" in self.model_type:
logger.info("Online ASR extract the feat")
samples = np.frombuffer(samples, dtype=np.int16)
assert samples.ndim == 1
self.num_samples += samples.shape[0]
logger.info(
f"This package receive {samples.shape[0]} pcm data. Global samples:{self.num_samples}"
)
# self.reamined_wav stores all the samples,
# include the original remained_wav and this package samples
if self.remained_wav is None:
self.remained_wav = samples
else:
assert self.remained_wav.ndim == 1 # (T,)
self.remained_wav = np.concatenate([self.remained_wav, samples])
logger.info(
f"The concatenation of remain and now audio samples length is: {self.remained_wav.shape}"
)
if len(self.remained_wav) < self.win_length:
# samples not enough for feature window
return 0
# fbank # cache for audio and feat
x_chunk = self.preprocessing(self.remained_wav, self.remained_wav = None
**self.preprocess_args) self.cached_feat = None
x_chunk = paddle.to_tensor(
x_chunk, dtype="float32").unsqueeze(axis=0)
# feature cache ## conformer
if self.cached_feat is None: # cache for conformer online
self.cached_feat = x_chunk self.subsampling_cache = None
else: self.elayers_output_cache = None
assert (len(x_chunk.shape) == 3) # (B,T,D) self.conformer_cnn_cache = None
assert (len(self.cached_feat.shape) == 3) # (B,T,D) self.encoder_out = None
self.cached_feat = paddle.concat( # conformer decoding state
[self.cached_feat, x_chunk], axis=1) self.offset = 0 # global offset in decoding frame unit
# set the feat device ## just for record info
if self.device is None: self.chunk_num = 0 # global decoding chunk num, not used
self.device = self.cached_feat.place
# cur frame step def output_reset(self):
num_frames = x_chunk.shape[1] ## outputs
# partial/ending decoding results
self.result_transcripts = ['']
# token timestamp result
self.word_time_stamp = []
# global frame step ## just for record
self.num_frames += num_frames self.hyps = []
# update remained wav # one best timestamp viterbi prob is large.
self.remained_wav = self.remained_wav[self.n_shift * num_frames:] self.time_stamp = []
logger.info( def reset_continuous_decoding(self):
f"process the audio feature success, the cached feat shape: {self.cached_feat.shape}" """
) when in continous decoding, reset for next utterance.
logger.info( """
f"After extract feat, the cached remain the audio samples: {self.remained_wav.shape}" self.global_frame_offset = self.num_frames
) self.model_reset()
logger.info(f"global samples: {self.num_samples}") self.searcher.reset()
logger.info(f"global frames: {self.num_frames}") self.endpointer.reset()
else: self.output_reset()
raise ValueError(f"not supported: {self.model_type}")
def reset(self): def reset(self):
if "deepspeech2" in self.model_type: if "deepspeech2" in self.model_type:
@ -241,38 +177,87 @@ class PaddleASRConnectionHanddler:
dtype=float32) dtype=float32)
self.decoder.reset_decoder(batch_size=1) self.decoder.reset_decoder(batch_size=1)
if "conformer" in self.model_type or "transformer" in self.model_type:
self.searcher.reset()
self.endpointer.reset()
self.device = None self.device = None
## common ## common
# global sample and frame step # global sample and frame step
self.num_samples = 0 self.num_samples = 0
self.global_frame_offset = 0
# frame step of cur utterance
self.num_frames = 0 self.num_frames = 0
# cache for audio and feat ## endpoint
self.remained_wav = None self.endpoint_state = False # True for detect endpoint
self.cached_feat = None
# partial/ending decoding results
self.result_transcripts = ['']
## conformer ## conformer
self.model_reset()
# cache for conformer online ## outputs
self.subsampling_cache = None self.output_reset()
self.elayers_output_cache = None
self.conformer_cnn_cache = None
self.encoder_out = None
# conformer decoding state
self.chunk_num = 0 # globa decoding chunk num
self.offset = 0 # global offset in decoding frame unit
self.hyps = []
# token timestamp result def extract_feat(self, samples: ByteString):
self.word_time_stamp = [] logger.info("Online ASR extract the feat")
samples = np.frombuffer(samples, dtype=np.int16)
assert samples.ndim == 1
# one best timestamp viterbi prob is large. self.num_samples += samples.shape[0]
self.time_stamp = [] logger.info(
f"This package receive {samples.shape[0]} pcm data. Global samples:{self.num_samples}"
)
# self.reamined_wav stores all the samples,
# include the original remained_wav and this package samples
if self.remained_wav is None:
self.remained_wav = samples
else:
assert self.remained_wav.ndim == 1 # (T,)
self.remained_wav = np.concatenate([self.remained_wav, samples])
logger.info(
f"The concatenation of remain and now audio samples length is: {self.remained_wav.shape}"
)
if len(self.remained_wav) < self.win_length:
# samples not enough for feature window
return 0
# fbank
x_chunk = self.preprocessing(self.remained_wav, **self.preprocess_args)
x_chunk = paddle.to_tensor(x_chunk, dtype="float32").unsqueeze(axis=0)
# feature cache
if self.cached_feat is None:
self.cached_feat = x_chunk
else:
assert (len(x_chunk.shape) == 3) # (B,T,D)
assert (len(self.cached_feat.shape) == 3) # (B,T,D)
self.cached_feat = paddle.concat(
[self.cached_feat, x_chunk], axis=1)
# set the feat device
if self.device is None:
self.device = self.cached_feat.place
# cur frame step
num_frames = x_chunk.shape[1]
# global frame step
self.num_frames += num_frames
# update remained wav
self.remained_wav = self.remained_wav[self.n_shift * num_frames:]
logger.info(
f"process the audio feature success, the cached feat shape: {self.cached_feat.shape}"
)
logger.info(
f"After extract feat, the cached remain the audio samples: {self.remained_wav.shape}"
)
logger.info(f"global samples: {self.num_samples}")
logger.info(f"global frames: {self.num_frames}")
def decode(self, is_finished=False): def decode(self, is_finished=False):
"""advance decoding """advance decoding
@ -280,14 +265,12 @@ class PaddleASRConnectionHanddler:
Args: Args:
is_finished (bool, optional): Is last frame or not. Defaults to False. is_finished (bool, optional): Is last frame or not. Defaults to False.
Raises:
Exception: when not support model.
Returns: Returns:
None: nothing None:
""" """
if "deepspeech2online" in self.model_type: if "deepspeech2" in self.model_type:
decoding_chunk_size = 1 # decoding chunk size = 1. int decoding frame unit decoding_chunk_size = 1 # decoding chunk size = 1. int decoding frame unit
context = 7 # context=7, in audio frame unit context = 7 # context=7, in audio frame unit
subsampling = 4 # subsampling=4, in audio frame unit subsampling = 4 # subsampling=4, in audio frame unit
@ -332,9 +315,11 @@ class PaddleASRConnectionHanddler:
end = None end = None
for cur in range(0, num_frames - left_frames + 1, stride): for cur in range(0, num_frames - left_frames + 1, stride):
end = min(cur + decoding_window, num_frames) end = min(cur + decoding_window, num_frames)
# extract the audio # extract the audio
x_chunk = self.cached_feat[:, cur:end, :].numpy() x_chunk = self.cached_feat[:, cur:end, :].numpy()
x_chunk_lens = np.array([x_chunk.shape[1]]) x_chunk_lens = np.array([x_chunk.shape[1]])
trans_best = self.decode_one_chunk(x_chunk, x_chunk_lens) trans_best = self.decode_one_chunk(x_chunk, x_chunk_lens)
self.result_transcripts = [trans_best] self.result_transcripts = [trans_best]
@ -409,31 +394,41 @@ class PaddleASRConnectionHanddler:
@paddle.no_grad() @paddle.no_grad()
def advance_decoding(self, is_finished=False): def advance_decoding(self, is_finished=False):
if "deepspeech" in self.model_type:
return
# reset endpiont state
self.endpoint_state = False
logger.info( logger.info(
"Conformer/Transformer: start to decode with advanced_decoding method" "Conformer/Transformer: start to decode with advanced_decoding method"
) )
cfg = self.ctc_decode_config cfg = self.ctc_decode_config
# cur chunk size, in decoding frame unit # cur chunk size, in decoding frame unit, e.g. 16
decoding_chunk_size = cfg.decoding_chunk_size decoding_chunk_size = cfg.decoding_chunk_size
# using num of history chunks # using num of history chunks, e.g -1
num_decoding_left_chunks = cfg.num_decoding_left_chunks num_decoding_left_chunks = cfg.num_decoding_left_chunks
assert decoding_chunk_size > 0 assert decoding_chunk_size > 0
# e.g. 4
subsampling = self.model.encoder.embed.subsampling_rate subsampling = self.model.encoder.embed.subsampling_rate
# e.g. 7
context = self.model.encoder.embed.right_context + 1 context = self.model.encoder.embed.right_context + 1
# processed chunk feature cached for next chunk # processed chunk feature cached for next chunk, e.g. 3
cached_feature_num = context - subsampling cached_feature_num = context - subsampling
# decoding stride, in audio frame unit
stride = subsampling * decoding_chunk_size
# decoding window, in audio frame unit # decoding window, in audio frame unit
decoding_window = (decoding_chunk_size - 1) * subsampling + context decoding_window = (decoding_chunk_size - 1) * subsampling + context
# decoding stride, in audio frame unit
stride = subsampling * decoding_chunk_size
if self.cached_feat is None: if self.cached_feat is None:
logger.info("no audio feat, please input more pcm data") logger.info("no audio feat, please input more pcm data")
return return
# (B=1,T,D)
num_frames = self.cached_feat.shape[1] num_frames = self.cached_feat.shape[1]
logger.info( logger.info(
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames" f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
@ -454,9 +449,6 @@ class PaddleASRConnectionHanddler:
return None, None return None, None
logger.info("start to do model forward") logger.info("start to do model forward")
# hist of chunks, in deocding frame unit
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
outputs = []
# num_frames - context + 1 ensure that current frame can get context window # num_frames - context + 1 ensure that current frame can get context window
if is_finished: if is_finished:
@ -466,7 +458,11 @@ class PaddleASRConnectionHanddler:
# we only process decoding_window frames for one chunk # we only process decoding_window frames for one chunk
left_frames = decoding_window left_frames = decoding_window
# hist of chunks, in deocding frame unit
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
# record the end for removing the processed feat # record the end for removing the processed feat
outputs = []
end = None end = None
for cur in range(0, num_frames - left_frames + 1, stride): for cur in range(0, num_frames - left_frames + 1, stride):
end = min(cur + decoding_window, num_frames) end = min(cur + decoding_window, num_frames)
@ -491,30 +487,40 @@ class PaddleASRConnectionHanddler:
self.encoder_out = ys self.encoder_out = ys
else: else:
self.encoder_out = paddle.concat([self.encoder_out, ys], axis=1) self.encoder_out = paddle.concat([self.encoder_out, ys], axis=1)
logger.info(
f"This connection handler encoder out shape: {self.encoder_out.shape}"
)
# get the ctc probs # get the ctc probs
ctc_probs = self.model.ctc.log_softmax(ys) # (1, maxlen, vocab_size) ctc_probs = self.model.ctc.log_softmax(ys) # (1, maxlen, vocab_size)
ctc_probs = ctc_probs.squeeze(0) ctc_probs = ctc_probs.squeeze(0)
## decoding
# advance decoding # advance decoding
self.searcher.search(ctc_probs, self.cached_feat.place) self.searcher.search(ctc_probs, self.cached_feat.place)
# get one best hyps # get one best hyps
self.hyps = self.searcher.get_one_best_hyps() self.hyps = self.searcher.get_one_best_hyps()
assert self.cached_feat.shape[0] == 1 # endpoint
assert end >= cached_feature_num if not is_finished:
def contain_nonsilence():
return len(self.hyps) > 0 and len(self.hyps[0]) > 0
decoding_something = contain_nonsilence()
if self.endpointer.endpoint_detected(ctc_probs.numpy(),
decoding_something):
self.endpoint_state = True
logger.info(f"Endpoint is detected at {self.num_frames} frame.")
# advance cache of feat # advance cache of feat
self.cached_feat = self.cached_feat[0, end - assert self.cached_feat.shape[0] == 1 #(B=1,T,D)
cached_feature_num:, :].unsqueeze(0) assert end >= cached_feature_num
self.cached_feat = self.cached_feat[:, end - cached_feature_num:, :]
assert len( assert len(
self.cached_feat.shape self.cached_feat.shape
) == 3, f"current cache feat shape is: {self.cached_feat.shape}" ) == 3, f"current cache feat shape is: {self.cached_feat.shape}"
logger.info(
f"This connection handler encoder out shape: {self.encoder_out.shape}"
)
def update_result(self): def update_result(self):
"""Conformer/Transformer hyps to result. """Conformer/Transformer hyps to result.
""" """
@ -654,24 +660,28 @@ class PaddleASRConnectionHanddler:
# update each word start and end time stamp # update each word start and end time stamp
# decoding frame to audio frame # decoding frame to audio frame
frame_shift = self.model.encoder.embed.subsampling_rate decode_frame_shift = self.model.encoder.embed.subsampling_rate
frame_shift_in_sec = frame_shift * (self.n_shift / self.sample_rate) decode_frame_shift_in_sec = decode_frame_shift * (self.n_shift /
logger.info(f"frame shift sec: {frame_shift_in_sec}") self.sample_rate)
logger.info(f"decode frame shift in sec: {decode_frame_shift_in_sec}")
global_offset_in_sec = self.global_frame_offset * self.frame_shift_in_ms / 1000.0
logger.info(f"global offset: {global_offset_in_sec} sec.")
word_time_stamp = [] word_time_stamp = []
for idx, _ in enumerate(self.time_stamp): for idx, _ in enumerate(self.time_stamp):
start = (self.time_stamp[idx - 1] + self.time_stamp[idx] start = (self.time_stamp[idx - 1] + self.time_stamp[idx]
) / 2.0 if idx > 0 else 0 ) / 2.0 if idx > 0 else 0
start = start * frame_shift_in_sec start = start * decode_frame_shift_in_sec
end = (self.time_stamp[idx] + self.time_stamp[idx + 1] end = (self.time_stamp[idx] + self.time_stamp[idx + 1]
) / 2.0 if idx < len(self.time_stamp) - 1 else self.offset ) / 2.0 if idx < len(self.time_stamp) - 1 else self.offset
end = end * frame_shift_in_sec end = end * decode_frame_shift_in_sec
word_time_stamp.append({ word_time_stamp.append({
"w": self.result_transcripts[0][idx], "w": self.result_transcripts[0][idx],
"bg": start, "bg": global_offset_in_sec + start,
"ed": end "ed": global_offset_in_sec + end
}) })
# logger.info(f"{word_time_stamp[-1]}") # logger.info(f"{word_time_stamp[-1]}")
@ -705,13 +715,14 @@ class ASRServerExecutor(ASRExecutor):
self.model_type = model_type self.model_type = model_type
self.sample_rate = sample_rate self.sample_rate = sample_rate
logger.info(f"model_type: {self.model_type}")
sample_rate_str = '16k' if sample_rate == 16000 else '8k' sample_rate_str = '16k' if sample_rate == 16000 else '8k'
tag = model_type + '-' + lang + '-' + sample_rate_str tag = model_type + '-' + lang + '-' + sample_rate_str
self.task_resource.set_task_model(model_tag=tag) self.task_resource.set_task_model(model_tag=tag)
if cfg_path is None or am_model is None or am_params is None: if cfg_path is None or am_model is None or am_params is None:
logger.info(f"Load the pretrained model, tag = {tag}")
self.res_path = self.task_resource.res_dir self.res_path = self.task_resource.res_dir
self.cfg_path = os.path.join( self.cfg_path = os.path.join(
self.res_path, self.task_resource.res_dict['cfg_path']) self.res_path, self.task_resource.res_dict['cfg_path'])
@ -719,7 +730,6 @@ class ASRServerExecutor(ASRExecutor):
self.task_resource.res_dict['model']) self.task_resource.res_dict['model'])
self.am_params = os.path.join(self.res_path, self.am_params = os.path.join(self.res_path,
self.task_resource.res_dict['params']) self.task_resource.res_dict['params'])
logger.info(self.res_path)
else: else:
self.cfg_path = os.path.abspath(cfg_path) self.cfg_path = os.path.abspath(cfg_path)
self.am_model = os.path.abspath(am_model) self.am_model = os.path.abspath(am_model)
@ -727,9 +737,12 @@ class ASRServerExecutor(ASRExecutor):
self.res_path = os.path.dirname( self.res_path = os.path.dirname(
os.path.dirname(os.path.abspath(self.cfg_path))) os.path.dirname(os.path.abspath(self.cfg_path)))
logger.info(self.cfg_path) logger.info("Load the pretrained model:")
logger.info(self.am_model) logger.info(f" tag = {tag}")
logger.info(self.am_params) logger.info(f" res_path: {self.res_path}")
logger.info(f" cfg path: {self.cfg_path}")
logger.info(f" am_model path: {self.am_model}")
logger.info(f" am_params path: {self.am_params}")
#Init body. #Init body.
self.config = CfgNode(new_allowed=True) self.config = CfgNode(new_allowed=True)
@ -738,25 +751,39 @@ class ASRServerExecutor(ASRExecutor):
if self.config.spm_model_prefix: if self.config.spm_model_prefix:
self.config.spm_model_prefix = os.path.join( self.config.spm_model_prefix = os.path.join(
self.res_path, self.config.spm_model_prefix) self.res_path, self.config.spm_model_prefix)
logger.info(f"spm model path: {self.config.spm_model_prefix}")
self.vocab = self.config.vocab_filepath
self.text_feature = TextFeaturizer( self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type, unit_type=self.config.unit_type,
vocab=self.config.vocab_filepath, vocab=self.config.vocab_filepath,
spm_model_prefix=self.config.spm_model_prefix) spm_model_prefix=self.config.spm_model_prefix)
self.vocab = self.config.vocab_filepath
with UpdateConfig(self.config): if "deepspeech2" in model_type:
if "deepspeech2" in model_type: with UpdateConfig(self.config):
# download lm
self.config.decode.lang_model_path = os.path.join( self.config.decode.lang_model_path = os.path.join(
MODEL_HOME, 'language_model', MODEL_HOME, 'language_model',
self.config.decode.lang_model_path) self.config.decode.lang_model_path)
lm_url = self.task_resource.res_dict['lm_url'] lm_url = self.task_resource.res_dict['lm_url']
lm_md5 = self.task_resource.res_dict['lm_md5'] lm_md5 = self.task_resource.res_dict['lm_md5']
logger.info(f"Start to load language model {lm_url}") logger.info(f"Start to load language model {lm_url}")
self.download_lm( self.download_lm(
lm_url, lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5) os.path.dirname(self.config.decode.lang_model_path), lm_md5)
elif "conformer" in model_type or "transformer" in model_type: # AM predictor
logger.info("ASR engine start to init the am predictor")
self.am_predictor_conf = am_predictor_conf
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
elif "conformer" in model_type or "transformer" in model_type:
with UpdateConfig(self.config):
logger.info("start to create the stream conformer asr engine") logger.info("start to create the stream conformer asr engine")
# update the decoding method # update the decoding method
if decode_method: if decode_method:
@ -770,37 +797,24 @@ class ASRServerExecutor(ASRExecutor):
logger.info( logger.info(
"we set the decoding_method to attention_rescoring") "we set the decoding_method to attention_rescoring")
self.config.decode.decoding_method = "attention_rescoring" self.config.decode.decoding_method = "attention_rescoring"
assert self.config.decode.decoding_method in [ assert self.config.decode.decoding_method in [
"ctc_prefix_beam_search", "attention_rescoring" "ctc_prefix_beam_search", "attention_rescoring"
], f"we only support ctc_prefix_beam_search and attention_rescoring dedoding method, current decoding method is {self.config.decode.decoding_method}" ], f"we only support ctc_prefix_beam_search and attention_rescoring dedoding method, current decoding method is {self.config.decode.decoding_method}"
else:
raise Exception("wrong type")
if "deepspeech2" in model_type: # load model
# AM predictor
logger.info("ASR engine start to init the am predictor")
self.am_predictor_conf = am_predictor_conf
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
elif "conformer" in model_type or "transformer" in model_type:
model_name = model_type[:model_type.rindex( model_name = model_type[:model_type.rindex(
'_')] # model_type: {model_name}_{dataset} '_')] # model_type: {model_name}_{dataset}
logger.info(f"model name: {model_name}") logger.info(f"model name: {model_name}")
model_class = self.task_resource.get_model_class(model_name) model_class = self.task_resource.get_model_class(model_name)
model_conf = self.config model = model_class.from_config(self.config)
model = model_class.from_config(model_conf)
self.model = model self.model = model
self.model.set_state_dict(paddle.load(self.am_model))
self.model.eval() self.model.eval()
# load model
model_dict = paddle.load(self.am_model)
self.model.set_state_dict(model_dict)
logger.info("create the transformer like model success")
else: else:
raise ValueError(f"Not support: {model_type}") raise Exception(f"not support: {model_type}")
logger.info(f"create the {model_type} model success")
return True return True
@ -857,6 +871,14 @@ class ASREngine(BaseEngine):
logger.info("Initialize ASR server engine successfully.") logger.info("Initialize ASR server engine successfully.")
return True return True
def new_handler(self):
"""New handler from model.
Returns:
PaddleASRConnectionHanddler: asr handler instance
"""
return PaddleASRConnectionHanddler(self)
def preprocess(self, *args, **kwargs): def preprocess(self, *args, **kwargs):
raise NotImplementedError("Online not using this.") raise NotImplementedError("Online not using this.")

@ -0,0 +1,118 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
import numpy as np
from paddlespeech.cli.log import logger
@dataclass
class OnlineCTCEndpointRule:
must_contain_nonsilence: bool = True
min_trailing_silence: int = 1000
min_utterance_length: int = 0
@dataclass
class OnlineCTCEndpoingOpt:
frame_shift_in_ms: int = 10
blank: int = 0 # blank id, that we consider as silence for purposes of endpointing.
blank_threshold: float = 0.8 # above blank threshold is silence
# We support three rules. We terminate decoding if ANY of these rules
# evaluates to "true". If you want to add more rules, do it by changing this
# code. If you want to disable a rule, you can set the silence-timeout for
# that rule to a very large number.
# rule1 times out after 5 seconds of silence, even if we decoded nothing.
rule1: OnlineCTCEndpointRule = OnlineCTCEndpointRule(False, 5000, 0)
# rule4 times out after 1.0 seconds of silence after decoding something,
# even if we did not reach a final-state at all.
rule2: OnlineCTCEndpointRule = OnlineCTCEndpointRule(True, 1000, 0)
# rule5 times out after the utterance is 20 seconds long, regardless of
# anything else.
rule3: OnlineCTCEndpointRule = OnlineCTCEndpointRule(False, 0, 20000)
class OnlineCTCEndpoint:
"""
[END-TO-END AUTOMATIC SPEECH RECOGNITION INTEGRATED WITH CTC-BASED VOICE ACTIVITY DETECTION](https://arxiv.org/pdf/2002.00551.pdf)
"""
def __init__(self, opts: OnlineCTCEndpoingOpt):
self.opts = opts
logger.info(f"Endpont Opts: {opts}")
self.frame_shift_in_ms = opts.frame_shift_in_ms
self.num_frames_decoded = 0
self.trailing_silence_frames = 0
self.reset()
def reset(self):
self.num_frames_decoded = 0
self.trailing_silence_frames = 0
def rule_activated(self,
rule: OnlineCTCEndpointRule,
rule_name: str,
decoding_something: bool,
trailine_silence: int,
utterance_length: int) -> bool:
ans = (
decoding_something or (not rule.must_contain_nonsilence)
) and trailine_silence >= rule.min_trailing_silence and utterance_length >= rule.min_utterance_length
if (ans):
logger.info(f"Endpoint Rule: {rule_name} activated: {rule}")
return ans
def endpoint_detected(self,
ctc_log_probs: np.ndarray,
decoding_something: bool) -> bool:
"""detect endpoint.
Args:
ctc_log_probs (np.ndarray): (T, D)
decoding_something (bool): contain nonsilince.
Returns:
bool: whether endpoint detected.
"""
for logprob in ctc_log_probs:
blank_prob = np.exp(logprob[self.opts.blank])
self.num_frames_decoded += 1
if blank_prob > self.opts.blank_threshold:
self.trailing_silence_frames += 1
else:
self.trailing_silence_frames = 0
assert self.num_frames_decoded >= self.trailing_silence_frames
assert self.frame_shift_in_ms > 0
utterance_length = self.num_frames_decoded * self.frame_shift_in_ms
trailing_silence = self.trailing_silence_frames * self.frame_shift_in_ms
if self.rule_activated(self.opts.rule1, 'rule1', decoding_something,
trailing_silence, utterance_length):
return True
if self.rule_activated(self.opts.rule2, 'rule2', decoding_something,
trailing_silence, utterance_length):
return True
if self.rule_activated(self.opts.rule3, 'rule3', decoding_something,
trailing_silence, utterance_length):
return True
return False

@ -30,8 +30,29 @@ class CTCPrefixBeamSearch:
config (yacs.config.CfgNode): the ctc prefix beam search configuration config (yacs.config.CfgNode): the ctc prefix beam search configuration
""" """
self.config = config self.config = config
# beam size
self.first_beam_size = self.config.beam_size
# TODO(support second beam size)
self.second_beam_size = int(self.first_beam_size * 1.0)
logger.info(
f"first and second beam size: {self.first_beam_size}, {self.second_beam_size}"
)
# state
self.cur_hyps = None
self.hyps = None
self.abs_time_step = 0
self.reset() self.reset()
def reset(self):
"""Rest the search cache value
"""
self.cur_hyps = None
self.hyps = None
self.abs_time_step = 0
@paddle.no_grad() @paddle.no_grad()
def search(self, ctc_probs, device, blank_id=0): def search(self, ctc_probs, device, blank_id=0):
"""ctc prefix beam search method decode a chunk feature """ctc prefix beam search method decode a chunk feature
@ -47,12 +68,17 @@ class CTCPrefixBeamSearch:
""" """
# decode # decode
logger.info("start to ctc prefix search") logger.info("start to ctc prefix search")
assert len(ctc_probs.shape) == 2
batch_size = 1 batch_size = 1
beam_size = self.config.beam_size
maxlen = ctc_probs.shape[0]
assert len(ctc_probs.shape) == 2 vocab_size = ctc_probs.shape[1]
first_beam_size = min(self.first_beam_size, vocab_size)
second_beam_size = min(self.second_beam_size, vocab_size)
logger.info(
f"effect first and second beam size: {self.first_beam_size}, {self.second_beam_size}"
)
maxlen = ctc_probs.shape[0]
# cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score)) # cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score))
# 0. blank_ending_score, # 0. blank_ending_score,
@ -75,7 +101,8 @@ class CTCPrefixBeamSearch:
# 2.1 First beam prune: select topk best # 2.1 First beam prune: select topk best
# do token passing process # do token passing process
top_k_logp, top_k_index = logp.topk(beam_size) # (beam_size,) top_k_logp, top_k_index = logp.topk(
first_beam_size) # (first_beam_size,)
for s in top_k_index: for s in top_k_index:
s = s.item() s = s.item()
ps = logp[s].item() ps = logp[s].item()
@ -148,7 +175,7 @@ class CTCPrefixBeamSearch:
next_hyps.items(), next_hyps.items(),
key=lambda x: log_add([x[1][0], x[1][1]]), key=lambda x: log_add([x[1][0], x[1][1]]),
reverse=True) reverse=True)
self.cur_hyps = next_hyps[:beam_size] self.cur_hyps = next_hyps[:second_beam_size]
# 2.3 update the absolute time step # 2.3 update the absolute time step
self.abs_time_step += 1 self.abs_time_step += 1
@ -163,7 +190,7 @@ class CTCPrefixBeamSearch:
"""Return the one best result """Return the one best result
Returns: Returns:
list: the one best result list: the one best result, List[str]
""" """
return [self.hyps[0][0]] return [self.hyps[0][0]]
@ -171,17 +198,10 @@ class CTCPrefixBeamSearch:
"""Return the search hyps """Return the search hyps
Returns: Returns:
list: return the search hyps list: return the search hyps, List[Tuple[str, float, ...]]
""" """
return self.hyps return self.hyps
def reset(self):
"""Rest the search cache value
"""
self.cur_hyps = None
self.hyps = None
self.abs_time_step = 0
def finalize_search(self): def finalize_search(self):
"""do nothing in ctc_prefix_beam_search """do nothing in ctc_prefix_beam_search
""" """

@ -42,7 +42,6 @@ class TTSServerExecutor(TTSExecutor):
self.task_resource = CommonTaskResource( self.task_resource = CommonTaskResource(
task='tts', model_format='dynamic', inference_mode='online') task='tts', model_format='dynamic', inference_mode='online')
def get_model_info(self, def get_model_info(self,
field: str, field: str,
model_name: str, model_name: str,

@ -19,7 +19,6 @@ from fastapi import WebSocketDisconnect
from starlette.websockets import WebSocketState as WebSocketState from starlette.websockets import WebSocketState as WebSocketState
from paddlespeech.cli.log import logger from paddlespeech.cli.log import logger
from paddlespeech.server.engine.asr.online.asr_engine import PaddleASRConnectionHanddler
from paddlespeech.server.engine.engine_pool import get_engine_pool from paddlespeech.server.engine.engine_pool import get_engine_pool
router = APIRouter() router = APIRouter()
@ -38,7 +37,7 @@ async def websocket_endpoint(websocket: WebSocket):
#2. if we accept the websocket headers, we will get the online asr engine instance #2. if we accept the websocket headers, we will get the online asr engine instance
engine_pool = get_engine_pool() engine_pool = get_engine_pool()
asr_engine = engine_pool['asr'] asr_model = engine_pool['asr']
#3. each websocket connection, we will create an PaddleASRConnectionHanddler to process such audio #3. each websocket connection, we will create an PaddleASRConnectionHanddler to process such audio
# and each connection has its own connection instance to process the request # and each connection has its own connection instance to process the request
@ -70,7 +69,8 @@ async def websocket_endpoint(websocket: WebSocket):
resp = {"status": "ok", "signal": "server_ready"} resp = {"status": "ok", "signal": "server_ready"}
# do something at begining here # do something at begining here
# create the instance to process the audio # create the instance to process the audio
connection_handler = PaddleASRConnectionHanddler(asr_engine) #connection_handler = PaddleASRConnectionHanddler(asr_model)
connection_handler = asr_model.new_handler()
await websocket.send_json(resp) await websocket.send_json(resp)
elif message['signal'] == 'end': elif message['signal'] == 'end':
# reset single engine for an new connection # reset single engine for an new connection
@ -100,11 +100,34 @@ async def websocket_endpoint(websocket: WebSocket):
# and decode for the result in this package data # and decode for the result in this package data
connection_handler.extract_feat(message) connection_handler.extract_feat(message)
connection_handler.decode(is_finished=False) connection_handler.decode(is_finished=False)
if connection_handler.endpoint_state:
logger.info("endpoint: detected and rescoring.")
connection_handler.rescoring()
word_time_stamp = connection_handler.get_word_time_stamp()
asr_results = connection_handler.get_result() asr_results = connection_handler.get_result()
# return the current period result if connection_handler.endpoint_state:
# if the engine create the vad instance, this connection will have many period results if connection_handler.continuous_decoding:
logger.info("endpoint: continue decoding")
connection_handler.reset_continuous_decoding()
else:
logger.info("endpoint: exit decoding")
# ending by endpoint
resp = {
"status": "ok",
"signal": "finished",
'result': asr_results,
'times': word_time_stamp
}
await websocket.send_json(resp)
break
# return the current partial result
# if the engine create the vad instance, this connection will have many partial results
resp = {'result': asr_results} resp = {'result': asr_results}
await websocket.send_json(resp) await websocket.send_json(resp)
except WebSocketDisconnect as e: except WebSocketDisconnect as e:
logger.error(e) logger.error(e)

@ -140,10 +140,7 @@ def parse_args():
], ],
help='Choose acoustic model type of tts task.') help='Choose acoustic model type of tts task.')
parser.add_argument( parser.add_argument(
'--am_config', '--am_config', type=str, default=None, help='Config of acoustic model.')
type=str,
default=None,
help='Config of acoustic model.')
parser.add_argument( parser.add_argument(
'--am_ckpt', '--am_ckpt',
type=str, type=str,
@ -179,10 +176,7 @@ def parse_args():
], ],
help='Choose vocoder type of tts task.') help='Choose vocoder type of tts task.')
parser.add_argument( parser.add_argument(
'--voc_config', '--voc_config', type=str, default=None, help='Config of voc.')
type=str,
default=None,
help='Config of voc.')
parser.add_argument( parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.') '--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument( parser.add_argument(

@ -174,10 +174,7 @@ def parse_args():
], ],
help='Choose acoustic model type of tts task.') help='Choose acoustic model type of tts task.')
parser.add_argument( parser.add_argument(
'--am_config', '--am_config', type=str, default=None, help='Config of acoustic model.')
type=str,
default=None,
help='Config of acoustic model.')
parser.add_argument( parser.add_argument(
'--am_ckpt', '--am_ckpt',
type=str, type=str,
@ -220,10 +217,7 @@ def parse_args():
], ],
help='Choose vocoder type of tts task.') help='Choose vocoder type of tts task.')
parser.add_argument( parser.add_argument(
'--voc_config', '--voc_config', type=str, default=None, help='Config of voc.')
type=str,
default=None,
help='Config of voc.')
parser.add_argument( parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.') '--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument( parser.add_argument(

@ -131,10 +131,7 @@ def parse_args():
choices=['fastspeech2_aishell3', 'tacotron2_aishell3'], choices=['fastspeech2_aishell3', 'tacotron2_aishell3'],
help='Choose acoustic model type of tts task.') help='Choose acoustic model type of tts task.')
parser.add_argument( parser.add_argument(
'--am_config', '--am_config', type=str, default=None, help='Config of acoustic model.')
type=str,
default=None,
help='Config of acoustic model.')
parser.add_argument( parser.add_argument(
'--am_ckpt', '--am_ckpt',
type=str, type=str,
@ -160,10 +157,7 @@ def parse_args():
help='Choose vocoder type of tts task.') help='Choose vocoder type of tts task.')
parser.add_argument( parser.add_argument(
'--voc_config', '--voc_config', type=str, default=None, help='Config of voc.')
type=str,
default=None,
help='Config of voc.')
parser.add_argument( parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.') '--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument( parser.add_argument(

@ -56,7 +56,8 @@ class VITSUpdater(StandardUpdater):
self.models: Dict[str, Layer] = models self.models: Dict[str, Layer] = models
# self.model = model # self.model = model
self.model = model._layers if isinstance(model, paddle.DataParallel) else model self.model = model._layers if isinstance(model,
paddle.DataParallel) else model
self.optimizers = optimizers self.optimizers = optimizers
self.optimizer_g: Optimizer = optimizers['generator'] self.optimizer_g: Optimizer = optimizers['generator']
@ -225,7 +226,8 @@ class VITSEvaluator(StandardEvaluator):
models = {"main": model} models = {"main": model}
self.models: Dict[str, Layer] = models self.models: Dict[str, Layer] = models
# self.model = model # self.model = model
self.model = model._layers if isinstance(model, paddle.DataParallel) else model self.model = model._layers if isinstance(model,
paddle.DataParallel) else model
self.criterions = criterions self.criterions = criterions
self.criterion_mel = criterions['mel'] self.criterion_mel = criterions['mel']

@ -971,18 +971,18 @@ class FeatureMatchLoss(nn.Layer):
return feat_match_loss return feat_match_loss
# loss for VITS # loss for VITS
class KLDivergenceLoss(nn.Layer): class KLDivergenceLoss(nn.Layer):
"""KL divergence loss.""" """KL divergence loss."""
def forward( def forward(
self, self,
z_p: paddle.Tensor, z_p: paddle.Tensor,
logs_q: paddle.Tensor, logs_q: paddle.Tensor,
m_p: paddle.Tensor, m_p: paddle.Tensor,
logs_p: paddle.Tensor, logs_p: paddle.Tensor,
z_mask: paddle.Tensor, z_mask: paddle.Tensor, ) -> paddle.Tensor:
) -> paddle.Tensor:
"""Calculate KL divergence loss. """Calculate KL divergence loss.
Args: Args:
@ -1002,7 +1002,7 @@ class KLDivergenceLoss(nn.Layer):
logs_p = paddle.cast(logs_p, 'float32') logs_p = paddle.cast(logs_p, 'float32')
z_mask = paddle.cast(z_mask, 'float32') z_mask = paddle.cast(z_mask, 'float32')
kl = logs_p - logs_q - 0.5 kl = logs_p - logs_q - 0.5
kl += 0.5 * ((z_p - m_p) ** 2) * paddle.exp(-2.0 * logs_p) kl += 0.5 * ((z_p - m_p)**2) * paddle.exp(-2.0 * logs_p)
kl = paddle.sum(kl * z_mask) kl = paddle.sum(kl * z_mask)
loss = kl / paddle.sum(z_mask) loss = kl / paddle.sum(z_mask)

@ -25,4 +25,3 @@ netron exp/deepspeech2_online/checkpoints/avg_1.jit.pdmodel --port 8022 --host
> Reminder: Only for developer, make sure you know what's it. > Reminder: Only for developer, make sure you know what's it.
* codelab - for speechx developer, using for test. * codelab - for speechx developer, using for test.

@ -4,4 +4,3 @@
> Reminder: Only for developer. > Reminder: Only for developer.
* codelab - for speechx developer, using for test. * codelab - for speechx developer, using for test.

@ -91,8 +91,8 @@ int main(int argc, char* argv[]) {
std::shared_ptr<ppspeech::Decodable> decodable( std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data)); new ppspeech::Decodable(nnet, raw_data));
int32 chunk_size = FLAGS_receptive_field_length int32 chunk_size = FLAGS_receptive_field_length +
+ (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate; (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate;
int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk; int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk;
int32 receptive_field_length = FLAGS_receptive_field_length; int32 receptive_field_length = FLAGS_receptive_field_length;
LOG(INFO) << "chunk size (frame): " << chunk_size; LOG(INFO) << "chunk size (frame): " << chunk_size;

@ -93,8 +93,8 @@ int main(int argc, char* argv[]) {
std::shared_ptr<ppspeech::Decodable> decodable( std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data, FLAGS_acoustic_scale)); new ppspeech::Decodable(nnet, raw_data, FLAGS_acoustic_scale));
int32 chunk_size = FLAGS_receptive_field_length int32 chunk_size = FLAGS_receptive_field_length +
+ (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate; (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate;
int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk; int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk;
int32 receptive_field_length = FLAGS_receptive_field_length; int32 receptive_field_length = FLAGS_receptive_field_length;
LOG(INFO) << "chunk size (frame): " << chunk_size; LOG(INFO) << "chunk size (frame): " << chunk_size;

@ -24,7 +24,8 @@ using std::unique_ptr;
Assembler::Assembler(AssemblerOptions opts, Assembler::Assembler(AssemblerOptions opts,
unique_ptr<FrontendInterface> base_extractor) { unique_ptr<FrontendInterface> base_extractor) {
frame_chunk_stride_ = opts.subsampling_rate * opts.nnet_decoder_chunk; frame_chunk_stride_ = opts.subsampling_rate * opts.nnet_decoder_chunk;
frame_chunk_size_ = (opts.nnet_decoder_chunk - 1) * opts.subsampling_rate + opts.receptive_filed_length; frame_chunk_size_ = (opts.nnet_decoder_chunk - 1) * opts.subsampling_rate +
opts.receptive_filed_length;
receptive_filed_length_ = opts.receptive_filed_length; receptive_filed_length_ = opts.receptive_filed_length;
base_extractor_ = std::move(base_extractor); base_extractor_ = std::move(base_extractor);
dim_ = base_extractor_->Dim(); dim_ = base_extractor_->Dim();
@ -50,8 +51,8 @@ bool Assembler::Compute(Vector<BaseFloat>* feats) {
Vector<BaseFloat> feature; Vector<BaseFloat> feature;
result = base_extractor_->Read(&feature); result = base_extractor_->Read(&feature);
if (result == false || feature.Dim() == 0) { if (result == false || feature.Dim() == 0) {
if (IsFinished() == false) return false; if (IsFinished() == false) return false;
break; break;
} }
feature_cache_.push(feature); feature_cache_.push(feature);
} }
@ -61,22 +62,22 @@ bool Assembler::Compute(Vector<BaseFloat>* feats) {
} }
while (feature_cache_.size() < frame_chunk_size_) { while (feature_cache_.size() < frame_chunk_size_) {
Vector<BaseFloat> feature(dim_, kaldi::kSetZero); Vector<BaseFloat> feature(dim_, kaldi::kSetZero);
feature_cache_.push(feature); feature_cache_.push(feature);
} }
int32 counter = 0; int32 counter = 0;
int32 cache_size = frame_chunk_size_ - frame_chunk_stride_; int32 cache_size = frame_chunk_size_ - frame_chunk_stride_;
int32 elem_dim = base_extractor_->Dim(); int32 elem_dim = base_extractor_->Dim();
while (counter < frame_chunk_size_) { while (counter < frame_chunk_size_) {
Vector<BaseFloat>& val = feature_cache_.front(); Vector<BaseFloat>& val = feature_cache_.front();
int32 start = counter * elem_dim; int32 start = counter * elem_dim;
feats->Range(start, elem_dim).CopyFromVec(val); feats->Range(start, elem_dim).CopyFromVec(val);
if (frame_chunk_size_ - counter <= cache_size ) { if (frame_chunk_size_ - counter <= cache_size) {
feature_cache_.push(val); feature_cache_.push(val);
} }
feature_cache_.pop(); feature_cache_.pop();
counter++; counter++;
} }
return result; return result;

@ -47,15 +47,11 @@ class Assembler : public FrontendInterface {
// feat dim // feat dim
virtual size_t Dim() const { return dim_; } virtual size_t Dim() const { return dim_; }
virtual void SetFinished() { virtual void SetFinished() { base_extractor_->SetFinished(); }
base_extractor_->SetFinished();
}
virtual bool IsFinished() const { return base_extractor_->IsFinished(); } virtual bool IsFinished() const { return base_extractor_->IsFinished(); }
virtual void Reset() { virtual void Reset() { base_extractor_->Reset(); }
base_extractor_->Reset();
}
private: private:
bool Compute(kaldi::Vector<kaldi::BaseFloat>* feats); bool Compute(kaldi::Vector<kaldi::BaseFloat>* feats);

@ -29,8 +29,7 @@ using kaldi::Matrix;
using std::vector; using std::vector;
FbankComputer::FbankComputer(const Options& opts) FbankComputer::FbankComputer(const Options& opts)
: opts_(opts), : opts_(opts), computer_(opts) {}
computer_(opts) {}
int32 FbankComputer::Dim() const { int32 FbankComputer::Dim() const {
return opts_.mel_opts.num_bins + (opts_.use_energy ? 1 : 0); return opts_.mel_opts.num_bins + (opts_.use_energy ? 1 : 0);
@ -41,7 +40,8 @@ bool FbankComputer::NeedRawLogEnergy() {
} }
// Compute feat // Compute feat
bool FbankComputer::Compute(Vector<BaseFloat>* window, Vector<BaseFloat>* feat) { bool FbankComputer::Compute(Vector<BaseFloat>* window,
Vector<BaseFloat>* feat) {
RealFft(window, true); RealFft(window, true);
kaldi::ComputePowerSpectrum(window); kaldi::ComputePowerSpectrum(window);
const kaldi::MelBanks& mel_bank = *(computer_.GetMelBanks(1.0)); const kaldi::MelBanks& mel_bank = *(computer_.GetMelBanks(1.0));

@ -72,9 +72,9 @@ bool FeatureCache::Compute() {
bool result = base_extractor_->Read(&feature); bool result = base_extractor_->Read(&feature);
if (result == false || feature.Dim() == 0) return false; if (result == false || feature.Dim() == 0) return false;
int32 num_chunk = feature.Dim() / dim_ ; int32 num_chunk = feature.Dim() / dim_;
for (int chunk_idx = 0; chunk_idx < num_chunk; ++chunk_idx) { for (int chunk_idx = 0; chunk_idx < num_chunk; ++chunk_idx) {
int32 start = chunk_idx * dim_; int32 start = chunk_idx * dim_;
Vector<BaseFloat> feature_chunk(dim_); Vector<BaseFloat> feature_chunk(dim_);
SubVector<BaseFloat> tmp(feature.Data() + start, dim_); SubVector<BaseFloat> tmp(feature.Data() + start, dim_);
feature_chunk.CopyFromVec(tmp); feature_chunk.CopyFromVec(tmp);

@ -22,9 +22,7 @@ namespace ppspeech {
struct FeatureCacheOptions { struct FeatureCacheOptions {
int32 max_size; int32 max_size;
int32 timeout; // ms int32 timeout; // ms
FeatureCacheOptions() FeatureCacheOptions() : max_size(kint16max), timeout(1) {}
: max_size(kint16max),
timeout(1) {}
}; };
class FeatureCache : public FrontendInterface { class FeatureCache : public FrontendInterface {

@ -39,6 +39,7 @@ class StreamingFeatureTpl : public FrontendInterface {
base_extractor_->Reset(); base_extractor_->Reset();
remained_wav_.Resize(0); remained_wav_.Resize(0);
} }
private: private:
bool Compute(const kaldi::Vector<kaldi::BaseFloat>& waves, bool Compute(const kaldi::Vector<kaldi::BaseFloat>& waves,
kaldi::Vector<kaldi::BaseFloat>* feats); kaldi::Vector<kaldi::BaseFloat>* feats);

@ -16,16 +16,15 @@
namespace ppspeech { namespace ppspeech {
template <class F> template <class F>
StreamingFeatureTpl<F>::StreamingFeatureTpl(const Options& opts, StreamingFeatureTpl<F>::StreamingFeatureTpl(
std::unique_ptr<FrontendInterface> base_extractor): const Options& opts, std::unique_ptr<FrontendInterface> base_extractor)
opts_(opts), : opts_(opts), computer_(opts), window_function_(opts.frame_opts) {
computer_(opts),
window_function_(opts.frame_opts) {
base_extractor_ = std::move(base_extractor); base_extractor_ = std::move(base_extractor);
} }
template <class F> template <class F>
void StreamingFeatureTpl<F>::Accept(const kaldi::VectorBase<kaldi::BaseFloat>& waves) { void StreamingFeatureTpl<F>::Accept(
const kaldi::VectorBase<kaldi::BaseFloat>& waves) {
base_extractor_->Accept(waves); base_extractor_->Accept(waves);
} }
@ -58,8 +57,9 @@ bool StreamingFeatureTpl<F>::Read(kaldi::Vector<kaldi::BaseFloat>* feats) {
// Compute feat // Compute feat
template <class F> template <class F>
bool StreamingFeatureTpl<F>::Compute(const kaldi::Vector<kaldi::BaseFloat>& waves, bool StreamingFeatureTpl<F>::Compute(
kaldi::Vector<kaldi::BaseFloat>* feats) { const kaldi::Vector<kaldi::BaseFloat>& waves,
kaldi::Vector<kaldi::BaseFloat>* feats) {
const kaldi::FrameExtractionOptions& frame_opts = const kaldi::FrameExtractionOptions& frame_opts =
computer_.GetFrameOptions(); computer_.GetFrameOptions();
int32 num_samples = waves.Dim(); int32 num_samples = waves.Dim();
@ -84,9 +84,11 @@ bool StreamingFeatureTpl<F>::Compute(const kaldi::Vector<kaldi::BaseFloat>& wave
&window, &window,
need_raw_log_energy ? &raw_log_energy : NULL); need_raw_log_energy ? &raw_log_energy : NULL);
kaldi::Vector<kaldi::BaseFloat> this_feature(computer_.Dim(), kaldi::kUndefined); kaldi::Vector<kaldi::BaseFloat> this_feature(computer_.Dim(),
kaldi::kUndefined);
computer_.Compute(&window, &this_feature); computer_.Compute(&window, &this_feature);
kaldi::SubVector<kaldi::BaseFloat> output_row(feats->Data() + frame * Dim(), Dim()); kaldi::SubVector<kaldi::BaseFloat> output_row(
feats->Data() + frame * Dim(), Dim());
output_row.CopyFromVec(this_feature); output_row.CopyFromVec(this_feature);
} }
return true; return true;

@ -16,6 +16,7 @@
#pragma once #pragma once
#include "frontend/audio/assembler.h"
#include "frontend/audio/audio_cache.h" #include "frontend/audio/audio_cache.h"
#include "frontend/audio/data_cache.h" #include "frontend/audio/data_cache.h"
#include "frontend/audio/fbank.h" #include "frontend/audio/fbank.h"
@ -23,7 +24,6 @@
#include "frontend/audio/frontend_itf.h" #include "frontend/audio/frontend_itf.h"
#include "frontend/audio/linear_spectrogram.h" #include "frontend/audio/linear_spectrogram.h"
#include "frontend/audio/normalizer.h" #include "frontend/audio/normalizer.h"
#include "frontend/audio/assembler.h"
namespace ppspeech { namespace ppspeech {

@ -28,22 +28,21 @@ using kaldi::VectorBase;
using kaldi::Matrix; using kaldi::Matrix;
using std::vector; using std::vector;
LinearSpectrogramComputer::LinearSpectrogramComputer( LinearSpectrogramComputer::LinearSpectrogramComputer(const Options& opts)
const Options& opts)
: opts_(opts) { : opts_(opts) {
kaldi::FeatureWindowFunction feature_window_function(opts.frame_opts); kaldi::FeatureWindowFunction feature_window_function(opts.frame_opts);
int32 window_size = opts.frame_opts.WindowSize(); int32 window_size = opts.frame_opts.WindowSize();
frame_length_ = window_size; frame_length_ = window_size;
dim_ = window_size / 2 + 1; dim_ = window_size / 2 + 1;
BaseFloat hanning_window_energy = kaldi::VecVec(feature_window_function.window, BaseFloat hanning_window_energy = kaldi::VecVec(
feature_window_function.window); feature_window_function.window, feature_window_function.window);
int32 sample_rate = opts.frame_opts.samp_freq; int32 sample_rate = opts.frame_opts.samp_freq;
scale_ = 2.0 / (hanning_window_energy * sample_rate); scale_ = 2.0 / (hanning_window_energy * sample_rate);
} }
// Compute spectrogram feat // Compute spectrogram feat
bool LinearSpectrogramComputer::Compute(Vector<BaseFloat>* window, bool LinearSpectrogramComputer::Compute(Vector<BaseFloat>* window,
Vector<BaseFloat>* feat) { Vector<BaseFloat>* feat) {
window->Resize(frame_length_, kaldi::kCopyData); window->Resize(frame_length_, kaldi::kCopyData);
RealFft(window, true); RealFft(window, true);
kaldi::ComputePowerSpectrum(window); kaldi::ComputePowerSpectrum(window);

@ -14,8 +14,8 @@
#include "base/flags.h" #include "base/flags.h"
#include "base/log.h" #include "base/log.h"
#include "frontend/audio/data_cache.h"
#include "frontend/audio/assembler.h" #include "frontend/audio/assembler.h"
#include "frontend/audio/data_cache.h"
#include "kaldi/util/table-types.h" #include "kaldi/util/table-types.h"
#include "nnet/decodable.h" #include "nnet/decodable.h"
#include "nnet/paddle_nnet.h" #include "nnet/paddle_nnet.h"
@ -75,8 +75,8 @@ int main(int argc, char* argv[]) {
std::shared_ptr<ppspeech::Decodable> decodable( std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data, FLAGS_acoustic_scale)); new ppspeech::Decodable(nnet, raw_data, FLAGS_acoustic_scale));
int32 chunk_size = FLAGS_receptive_field_length int32 chunk_size = FLAGS_receptive_field_length +
+ (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate; (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate;
int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk; int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk;
int32 receptive_field_length = FLAGS_receptive_field_length; int32 receptive_field_length = FLAGS_receptive_field_length;
LOG(INFO) << "chunk size (frame): " << chunk_size; LOG(INFO) << "chunk size (frame): " << chunk_size;
@ -130,7 +130,9 @@ int main(int argc, char* argv[]) {
vector<kaldi::BaseFloat> prob; vector<kaldi::BaseFloat> prob;
while (decodable->FrameLikelihood(frame_idx, &prob)) { while (decodable->FrameLikelihood(frame_idx, &prob)) {
kaldi::Vector<kaldi::BaseFloat> vec_tmp(prob.size()); kaldi::Vector<kaldi::BaseFloat> vec_tmp(prob.size());
std::memcpy(vec_tmp.Data(), prob.data(), sizeof(kaldi::BaseFloat)*prob.size()); std::memcpy(vec_tmp.Data(),
prob.data(),
sizeof(kaldi::BaseFloat) * prob.size());
prob_vec.push_back(vec_tmp); prob_vec.push_back(vec_tmp);
frame_idx++; frame_idx++;
} }
@ -142,7 +144,8 @@ int main(int argc, char* argv[]) {
KALDI_LOG << " the nnet prob of " << utt << " is empty"; KALDI_LOG << " the nnet prob of " << utt << " is empty";
continue; continue;
} }
kaldi::Matrix<kaldi::BaseFloat> result(prob_vec.size(),prob_vec[0].Dim()); kaldi::Matrix<kaldi::BaseFloat> result(prob_vec.size(),
prob_vec[0].Dim());
for (int32 row_idx = 0; row_idx < prob_vec.size(); ++row_idx) { for (int32 row_idx = 0; row_idx < prob_vec.size(); ++row_idx) {
for (int32 col_idx = 0; col_idx < prob_vec[0].Dim(); ++col_idx) { for (int32 col_idx = 0; col_idx < prob_vec[0].Dim(); ++col_idx) {
result(row_idx, col_idx) = prob_vec[row_idx](col_idx); result(row_idx, col_idx) = prob_vec[row_idx](col_idx);

@ -41,7 +41,7 @@ class WebSocketClient {
void SendDataEnd(); void SendDataEnd();
bool Done() const { return done_; } bool Done() const { return done_; }
std::string GetResult() const { return result_; } std::string GetResult() const { return result_; }
std::string GetPartialResult() const { return partial_result_;} std::string GetPartialResult() const { return partial_result_; }
private: private:
void Connect(); void Connect();

@ -77,8 +77,9 @@ void ConnectionHandler::OnSpeechData(const beast::flat_buffer& buffer) {
std::string partial_result = recognizer_->GetPartialResult(); std::string partial_result = recognizer_->GetPartialResult();
json::value rv = { json::value rv = {{"status", "ok"},
{"status", "ok"}, {"type", "partial_result"}, {"result", partial_result}}; {"type", "partial_result"},
{"result", partial_result}};
ws_.text(true); ws_.text(true);
ws_.write(asio::buffer(json::serialize(rv))); ws_.write(asio::buffer(json::serialize(rv)));
} }

Loading…
Cancel
Save