Change StaticRNN to fluid.layers.rnn.

pull/375/head
lfchener 5 years ago
parent b86bff118e
commit 8172681b55

@ -60,6 +60,14 @@ def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
class RNNCell(fluid.layers.RNNCell): class RNNCell(fluid.layers.RNNCell):
def __init__(self,
hidden_size,
param_attr=None,
bias_attr=None,
hidden_activation=None,
activation=None,
dtype="float32",
name="RNNCell"):
'''A simple rnn cell. '''A simple rnn cell.
:param hidden_size: Dimension of RNN cells. :param hidden_size: Dimension of RNN cells.
:type hidden_size: int :type hidden_size: int
@ -76,14 +84,6 @@ class RNNCell(fluid.layers.RNNCell):
:type name: string :type name: string
''' '''
def __init__(self,
hidden_size,
param_attr=None,
bias_attr=None,
hidden_activation=None,
activation=None,
dtype="float32",
name="RNNCell"):
self.hidden_size = hidden_size self.hidden_size = hidden_size
self.param_attr = param_attr self.param_attr = param_attr
self.bias_attr = bias_attr self.bias_attr = bias_attr
@ -123,6 +123,20 @@ def bidirectional_simple_rnn_bn_layer(name, input, size, share_weights):
:return: Bidirectional simple rnn layer. :return: Bidirectional simple rnn layer.
:rtype: Variable :rtype: Variable
""" """
forward_cell = RNNCell(
hidden_size=size,
activation=fluid.layers.brelu,
param_attr=fluid.ParamAttr(name=name + '_forward_rnn_weight'),
bias_attr=fluid.ParamAttr(name=name + '_forward_rnn_bias'))
reverse_cell = RNNCell(
hidden_size=size,
activation=fluid.layers.brelu,
param_attr=fluid.ParamAttr(name=name + '_reverse_rnn_weight'),
bias_attr=fluid.ParamAttr(name=name + '_reverse_rnn_bias'))
pad_value = fluid.layers.assign(input=np.array([0.0], dtype=np.float32))
if share_weights: if share_weights:
#input-hidden weights shared between bi-directional rnn. #input-hidden weights shared between bi-directional rnn.
input_proj = fluid.layers.fc( input_proj = fluid.layers.fc(
@ -141,24 +155,12 @@ def bidirectional_simple_rnn_bn_layer(name, input, size, share_weights):
moving_mean_name=name + '_batch_norm_moving_mean', moving_mean_name=name + '_batch_norm_moving_mean',
moving_variance_name=name + '_batch_norm_moving_variance') moving_variance_name=name + '_batch_norm_moving_variance')
#forward and backword in time #forward and backword in time
forward_cell = RNNCell(
hidden_size=size,
activation=fluid.layers.brelu,
param_attr=fluid.ParamAttr(name=name + '_forward_rnn_weight'),
bias_attr=fluid.ParamAttr(name=name + '_forward_rnn_bias'))
pad_value = fluid.layers.assign(input=np.array([0.0], dtype=np.float32))
input, length = fluid.layers.sequence_pad(input_proj_bn, pad_value) input, length = fluid.layers.sequence_pad(input_proj_bn, pad_value)
forward_rnn, _ = fluid.layers.rnn( forward_rnn, _ = fluid.layers.rnn(
cell=forward_cell, inputs=input, time_major=False, is_reverse=False) cell=forward_cell, inputs=input, time_major=False, is_reverse=False)
forward_rnn = fluid.layers.sequence_unpad(x=forward_rnn, length=length) forward_rnn = fluid.layers.sequence_unpad(x=forward_rnn, length=length)
reverse_cell = RNNCell(
hidden_size=size,
activation=fluid.layers.brelu,
param_attr=fluid.ParamAttr(name=name + '_reverse_rnn_weight'),
bias_attr=fluid.ParamAttr(name=name + '_reverse_rnn_bias'))
input, length = fluid.layers.sequence_pad(input_proj_bn, pad_value)
reverse_rnn, _ = fluid.layers.rnn( reverse_rnn, _ = fluid.layers.rnn(
cell=reverse_cell, cell=reverse_cell,
inputs=input, inputs=input,
@ -174,7 +176,7 @@ def bidirectional_simple_rnn_bn_layer(name, input, size, share_weights):
act=None, act=None,
param_attr=fluid.ParamAttr(name=name + '_forward_fc_weight'), param_attr=fluid.ParamAttr(name=name + '_forward_fc_weight'),
bias_attr=False) bias_attr=False)
input_proj_backward = fluid.layers.fc( input_proj_reverse = fluid.layers.fc(
input=input, input=input,
size=size, size=size,
act=None, act=None,
@ -189,8 +191,8 @@ def bidirectional_simple_rnn_bn_layer(name, input, size, share_weights):
bias_attr=fluid.ParamAttr(name=name + '_forward_batch_norm_bias'), bias_attr=fluid.ParamAttr(name=name + '_forward_batch_norm_bias'),
moving_mean_name=name + '_forward_batch_norm_moving_mean', moving_mean_name=name + '_forward_batch_norm_moving_mean',
moving_variance_name=name + '_forward_batch_norm_moving_variance') moving_variance_name=name + '_forward_batch_norm_moving_variance')
input_proj_bn_backward = fluid.layers.batch_norm( input_proj_bn_reverse = fluid.layers.batch_norm(
input=input_proj_backward, input=input_proj_reverse,
act=None, act=None,
param_attr=fluid.ParamAttr( param_attr=fluid.ParamAttr(
name=name + '_reverse_batch_norm_weight'), name=name + '_reverse_batch_norm_weight'),
@ -198,24 +200,14 @@ def bidirectional_simple_rnn_bn_layer(name, input, size, share_weights):
moving_mean_name=name + '_reverse_batch_norm_moving_mean', moving_mean_name=name + '_reverse_batch_norm_moving_mean',
moving_variance_name=name + '_reverse_batch_norm_moving_variance') moving_variance_name=name + '_reverse_batch_norm_moving_variance')
# forward and backward in time # forward and backward in time
forward_cell = RNNCell( input, length = fluid.layers.sequence_pad(input_proj_bn_forward,
hidden_size=size, pad_value)
activation=fluid.layers.brelu,
param_attr=fluid.ParamAttr(name=name + '_forward_rnn_weight'),
bias_attr=fluid.ParamAttr(name=name + '_forward_rnn_bias'))
pad_value = fluid.layers.assign(input=np.array([0.0], dtype=np.float32))
input, length = fluid.layers.sequence_pad(input_proj_bn, pad_value)
forward_rnn, _ = fluid.layers.rnn( forward_rnn, _ = fluid.layers.rnn(
cell=forward_cell, inputs=input, time_major=False, is_reverse=False) cell=forward_cell, inputs=input, time_major=False, is_reverse=False)
forward_rnn = fluid.layers.sequence_unpad(x=forward_rnn, length=length) forward_rnn = fluid.layers.sequence_unpad(x=forward_rnn, length=length)
reverse_cell = RNNCell( input, length = fluid.layers.sequence_pad(input_proj_bn_reverse,
hidden_size=size, pad_value)
activation=fluid.layers.brelu,
param_attr=fluid.ParamAttr(name=name + '_reverse_rnn_weight'),
bias_attr=fluid.ParamAttr(name=name + '_reverse_rnn_bias'))
input, length = fluid.layers.sequence_pad(input_proj_bn, pad_value)
reverse_rnn, _ = fluid.layers.rnn( reverse_rnn, _ = fluid.layers.rnn(
cell=reverse_cell, cell=reverse_cell,
inputs=input, inputs=input,
@ -248,7 +240,7 @@ def bidirectional_gru_bn_layer(name, input, size, act):
act=None, act=None,
param_attr=fluid.ParamAttr(name=name + '_forward_fc_weight'), param_attr=fluid.ParamAttr(name=name + '_forward_fc_weight'),
bias_attr=False) bias_attr=False)
input_proj_backward = fluid.layers.fc( input_proj_reverse = fluid.layers.fc(
input=input, input=input,
size=size * 3, size=size * 3,
act=None, act=None,
@ -262,8 +254,8 @@ def bidirectional_gru_bn_layer(name, input, size, act):
bias_attr=fluid.ParamAttr(name=name + '_forward_batch_norm_bias'), bias_attr=fluid.ParamAttr(name=name + '_forward_batch_norm_bias'),
moving_mean_name=name + '_forward_batch_norm_moving_mean', moving_mean_name=name + '_forward_batch_norm_moving_mean',
moving_variance_name=name + '_forward_batch_norm_moving_variance') moving_variance_name=name + '_forward_batch_norm_moving_variance')
input_proj_bn_backward = fluid.layers.batch_norm( input_proj_bn_reverse = fluid.layers.batch_norm(
input=input_proj_backward, input=input_proj_reverse,
act=None, act=None,
param_attr=fluid.ParamAttr(name=name + '_reverse_batch_norm_weight'), param_attr=fluid.ParamAttr(name=name + '_reverse_batch_norm_weight'),
bias_attr=fluid.ParamAttr(name=name + '_reverse_batch_norm_bias'), bias_attr=fluid.ParamAttr(name=name + '_reverse_batch_norm_bias'),
@ -279,7 +271,7 @@ def bidirectional_gru_bn_layer(name, input, size, act):
bias_attr=fluid.ParamAttr(name=name + '_forward_gru_bias'), bias_attr=fluid.ParamAttr(name=name + '_forward_gru_bias'),
is_reverse=False) is_reverse=False)
reverse_gru = fluid.layers.dynamic_gru( reverse_gru = fluid.layers.dynamic_gru(
input=input_proj_bn_backward, input=input_proj_bn_reverse,
size=size, size=size,
gate_activation='sigmoid', gate_activation='sigmoid',
candidate_activation=act, candidate_activation=act,

Loading…
Cancel
Save