|
|
|
@ -11,9 +11,10 @@
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
from paddle import nn
|
|
|
|
|
import math
|
|
|
|
|
"""
|
|
|
|
|
To align the initializer between paddle and torch,
|
|
|
|
|
the API below are set defalut initializer with priority higger than global initializer.
|
|
|
|
@ -81,10 +82,18 @@ class Linear(nn.Linear):
|
|
|
|
|
name=None):
|
|
|
|
|
if weight_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
weight_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
|
|
|
|
|
weight_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=nn.initializer.KaimingUniform(
|
|
|
|
|
fan_in=None,
|
|
|
|
|
negative_slope=math.sqrt(5),
|
|
|
|
|
nonlinearity='leaky_relu'))
|
|
|
|
|
if bias_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
bias_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
|
|
|
|
|
bias_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=nn.initializer.KaimingUniform(
|
|
|
|
|
fan_in=None,
|
|
|
|
|
negative_slope=math.sqrt(5),
|
|
|
|
|
nonlinearity='leaky_relu'))
|
|
|
|
|
super(Linear, self).__init__(in_features, out_features, weight_attr,
|
|
|
|
|
bias_attr, name)
|
|
|
|
|
|
|
|
|
@ -104,10 +113,18 @@ class Conv1D(nn.Conv1D):
|
|
|
|
|
data_format='NCL'):
|
|
|
|
|
if weight_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
weight_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
|
|
|
|
|
weight_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=nn.initializer.KaimingUniform(
|
|
|
|
|
fan_in=None,
|
|
|
|
|
negative_slope=math.sqrt(5),
|
|
|
|
|
nonlinearity='leaky_relu'))
|
|
|
|
|
if bias_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
bias_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
|
|
|
|
|
bias_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=nn.initializer.KaimingUniform(
|
|
|
|
|
fan_in=None,
|
|
|
|
|
negative_slope=math.sqrt(5),
|
|
|
|
|
nonlinearity='leaky_relu'))
|
|
|
|
|
super(Conv1D, self).__init__(
|
|
|
|
|
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
|
|
|
|
groups, padding_mode, weight_attr, bias_attr, data_format)
|
|
|
|
@ -128,10 +145,18 @@ class Conv2D(nn.Conv2D):
|
|
|
|
|
data_format='NCHW'):
|
|
|
|
|
if weight_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
weight_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
|
|
|
|
|
weight_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=nn.initializer.KaimingUniform(
|
|
|
|
|
fan_in=None,
|
|
|
|
|
negative_slope=math.sqrt(5),
|
|
|
|
|
nonlinearity='leaky_relu'))
|
|
|
|
|
if bias_attr is None:
|
|
|
|
|
if global_init_type == "kaiming_uniform":
|
|
|
|
|
bias_attr = paddle.ParamAttr(initializer=nn.initializer.KaimingUniform(fan_in=None, negative_slope=math.sqrt(5), nonlinearity='leaky_relu'))
|
|
|
|
|
bias_attr = paddle.ParamAttr(
|
|
|
|
|
initializer=nn.initializer.KaimingUniform(
|
|
|
|
|
fan_in=None,
|
|
|
|
|
negative_slope=math.sqrt(5),
|
|
|
|
|
nonlinearity='leaky_relu'))
|
|
|
|
|
super(Conv2D, self).__init__(
|
|
|
|
|
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
|
|
|
|
groups, padding_mode, weight_attr, bias_attr, data_format)
|
|
|
|
|