[wip][vec] update readme, test=doc #1543

pull/1547/head
qingen 4 years ago
parent b1f11ccd65
commit 7fd0b98eee

@ -3,11 +3,19 @@
# Audio Searching
## Introduction
This demo uses ECAPA-TDNN(or other models) for Speaker Recognition base on MySQL to store user-info/id and Milvus to search vectors.
As the Internet continues to evolve, unstructured data such as emails, social media photos, live videos, and customer service voice calls have become increasingly common. If we want to process the data on a computer, we need to use embedding technology to transform the data into vector and store, index, and query it
However, when there is a large amount of data, such as hundreds of millions of audio tracks, it is more difficult to do a similarity search. The exhaustive method is feasible, but very time consuming. For this scenario, this demo will introduce how to build an audio similarity retrieval system using the open source vector database Milvus
Audio retrieval (speech, music, speaker, etc.) enables querying and finding similar sounds (or the same speaker) in a large amount of audio data. The audio similarity retrieval system can be used to identify similar sound effects, minimize intellectual property infringement, quickly retrieve the voice print library, and help enterprises control fraud and identity theft. Audio retrieval also plays an important role in the classification and statistical analysis of audio data
In this demo, you will learn how to build an audio retrieval system to retrieve similar sound snippets. The uploaded audio clips are converted into vector data using paddlespeech-based pre-training models (audio classification model, speaker recognition model, etc.) and stored in Milvus. Milvus automatically generates a unique ID for each vector, then stores the ID and the corresponding audio information (audio ID, audio speaker ID, etc.) in MySQL to complete the library construction. During retrieval, users upload test audio to obtain vector, and then conduct vector similarity search in Milvus. The retrieval result returned by Milvus is vector ID, and the corresponding audio information can be queried in MySQL by ID
The demo uses the [CN-Celeb](http://openslr.org/82/) dataset of at least 650,000 audio entries and 3000 speakers to build the audio vector library, which is then retrieved using a preset distance calculation. The dataset can also use other, Adjust as needed, e.g. Librispeech, VoxCeleb, UrbanSound, etc
## Usage
### 1. Prepare MySQL and Milvus services by docker-compose
The molecular similarity search system requires Milvus, MySQL services. We can start these containers with one click through [docker-compose.yaml](./docker-compose.yaml), so please make sure you have [installed Docker Engine](https://docs.docker.com/engine/install/) and [Docker Compose](https://docs.docker.com/compose/install/) before running. then
The audio similarity search system requires Milvus, MySQL services. We can start these containers with one click through [docker-compose.yaml](./docker-compose.yaml), so please make sure you have [installed Docker Engine](https://docs.docker.com/engine/install/) and [Docker Compose](https://docs.docker.com/compose/install/) before running. then
```bash
docker-compose -f docker-compose.yaml up -d
@ -81,15 +89,43 @@ INFO: Uvicorn running on http://127.0.0.1:8002 (Press CTRL+C to quit)
```
### 3. Usage
- Prepare data
```bash
wget -c https://www.openslr.org/resources/82/cn-celeb_v2.tar.gz && tar -xvf cn-celeb_v2.tar.gz
```
Note: If you want to build a quick demo, you can use ./src/test_main.py:download_audio_data function, it download 20 audio files , Subsequent results show this collection as an example
- Run
The internal process is downloading data, loading the Paddlespeech model, extracting embedding, storing library, retrieving and deleting library
```bash
python ./src/test_main.py
```
Output
```bash
Checkpoint path: %your model path%
Extracting feature from audio No. 1 , 20 audios in total
Extracting feature from audio No. 2 , 20 audios in total
...
2022-03-09 17:22:13,870 INFO main.py load_audios 85 Successfully loaded data, total count: 20
2022-03-09 17:22:13,898 INFO main.py count_audio 147 Successfully count the number of data!
2022-03-09 17:22:13,918 INFO main.py audio_path 57 Successfully load audio: ./example_audio/test.wav
...
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/test.wav, distance 0.0
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/knife_chopping.wav, distance 0.021805256605148315
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/knife_cut_into_flesh.wav, distance 0.052762262523174286
...
2022-03-09 17:22:32,582 INFO main.py search_local_audio 135 Successfully searched similar audio!
2022-03-09 17:22:33,658 INFO main.py drop_tables 159 Successfully drop tables in Milvus and MySQL!
```
### 4.Pretrained Models
Here is a list of pretrained models released by PaddleSpeech that can be used by command and python API:
Here is a list of pretrained models released by PaddleSpeech :
| Model | Sample Rate
| :--- | :---:
| ecapa_tdnn | 16000
| panns_cnn6| 32000
| panns_cnn10| 32000
| panns_cnn14| 32000

@ -0,0 +1,132 @@
(简体中文|[English](./README.md))
# 音频相似性检索
## 介绍
随着互联网不断发展,电子邮件、社交媒体照片、直播视频、客服语音等非结构化数据已经变得越来越普遍。如果想要使用计算机来处理这些数据,需要使用 embedding 技术将这些数据转化为向量 vector然后进行存储、建索引、并查询
但是当数据量很大比如上亿条音频要做相似度搜索就比较困难了。穷举法固然可行但非常耗时。针对这种场景该demo 将介绍如何使用开源向量数据库 Milvus 搭建音频相似度检索系统
音频检索(如演讲、音乐、说话人等检索)实现了在海量音频数据中查询并找出相似声音(或相同说话人)片段。音频相似性检索系统可用于识别相似的音效、最大限度减少知识产权侵权等,还可以快速的检索声纹库、帮助企业控制欺诈和身份盗用等。在音频数据的分类和统计分析中,音频检索也发挥着重要作用
在本 demo 中,你将学会如何构建一个音频检索系统,用来检索相似的声音片段。使用基于 PaddleSpeech 预训练模型(音频分类模型,说话人识别模型等)将上传的音频片段转换为向量数据,并存储在 Milvus 中。Milvus 自动为每个向量生成唯一的 ID然后将 ID 和 相应的音频信息音频id音频的说话人id等等存储在 MySQL这样就完成建库的工作。用户在检索时上传测试音频得到向量然后在 Milvus 中进行向量相似度搜索Milvus 返回的检索结果为向量 ID通过 ID 在 MySQL 内部查询相应的音频信息即可
这个 demo 使用 [CN-Celeb](http://openslr.org/82/) 数据集,包括至少 650000 条音频3000 个说话人来建立音频向量库然后通过预设的距离计算方式进行检索这里面数据集也可以使用其他的根据需要调整如LibrispeechVoxCelebUrbanSound等
## 使用方法
### 1. MySQL 和 Milvus 安装
音频相似度搜索系统需要Milvus, MySQL服务。 我们可以通过[Docker-Compose.yaml](./ Docker-Compose.yaml)一键启动这些容器,所以请确保在运行之前已经安装了[Docker Engine](https://docs.docker.com/engine/install/) 和[Docker Compose](https://docs.docker.com/compose/install/)。 即
```bash
docker-compose -f docker-compose.yaml up -d
```
然后你会看到所有的容器都被创建:
```bash
Creating network "quick_deploy_app_net" with driver "bridge"
Creating milvus-minio ... done
Creating milvus-etcd ... done
Creating audio-mysql ... done
Creating milvus-standalone ... done
```
可以采用'docker ps'来显示所有的容器,还可以使用'docker logs audio-mysql'来获取服务器容器的日志:
```bash
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b2bcf279e599 milvusdb/milvus:v2.0.1 "/tini -- milvus run…" 22 hours ago Up 22 hours 0.0.0.0:19530->19530/tcp milvus-standalone
d8ef4c84e25c mysql:5.7 "docker-entrypoint.s…" 22 hours ago Up 22 hours 0.0.0.0:3306->3306/tcp, 33060/tcp audio-mysql
8fb501edb4f3 quay.io/coreos/etcd:v3.5.0 "etcd -advertise-cli…" 22 hours ago Up 22 hours 2379-2380/tcp milvus-etcd
ffce340b3790 minio/minio:RELEASE.2020-12-03T00-03-10Z "/usr/bin/docker-ent…" 22 hours ago Up 22 hours (healthy) 9000/tcp milvus-minio
```
### 2. 配置并启动 API 服务
启动系统服务程序,它会提供基于 Http 后端服务
- 安装服务依赖的 python 基础包
```bash
pip install -r requirements.txt
```
- 修改配置
```bash
vim src/config.py
```
请根据实际环境进行修改。 这里列出了一些需要设置的参数,更多信息请参考[config.py](./src/config.py)
| **Parameter** | **Description** | **Default setting** |
| ---------------- | ----------------------------------------------------- | ------------------- |
| MILVUS_HOST | The IP address of Milvus, you can get it by ifconfig. If running everything on one machine, most likely 127.0.0.1 | 127.0.0.1 |
| MILVUS_PORT | Port of Milvus. | 19530 |
| VECTOR_DIMENSION | Dimension of the vectors. | 2048 |
| MYSQL_HOST | The IP address of Mysql. | 127.0.0.1 |
| MYSQL_PORT | Port of Milvus. | 3306 |
| DEFAULT_TABLE | The milvus and mysql default collection name. | audio_table |
- 运行程序
启动用 Fastapi 构建的服务
```bash
python src/main.py
```
然后你会看到应用程序启动:
```bash
INFO: Started server process [3949]
2022-03-07 17:39:14,864 INFO server.py serve 75 Started server process [3949]
INFO: Waiting for application startup.
2022-03-07 17:39:14,865 INFO on.py startup 45 Waiting for application startup.
INFO: Application startup complete.
2022-03-07 17:39:14,866 INFO on.py startup 59 Application startup complete.
INFO: Uvicorn running on http://127.0.0.1:8002 (Press CTRL+C to quit)
2022-03-07 17:39:14,867 INFO server.py _log_started_message 206 Uvicorn running on http://127.0.0.1:8002 (Press CTRL+C to quit)
```
### 3. 使用方法
- 准备数据
```bash
wget -c https://www.openslr.org/resources/82/cn-celeb_v2.tar.gz && tar -xvf cn-celeb_v2.tar.gz
```
注:如果希望快速搭建 demo可以采用 ./src/test_main.py:download_audio_data 内部的 20 条音频,后续结果展示以该集合为例
- 运行测试程序
内部将依次下载数据,加载 paddlespeech 模型,提取 embedding存储建库检索删库
```bash
python ./src/test_main.py
```
输出:
```bash
Checkpoint path: %your model path%
Extracting feature from audio No. 1 , 20 audios in total
Extracting feature from audio No. 2 , 20 audios in total
...
2022-03-09 17:22:13,870 INFO main.py load_audios 85 Successfully loaded data, total count: 20
2022-03-09 17:22:13,898 INFO main.py count_audio 147 Successfully count the number of data!
2022-03-09 17:22:13,918 INFO main.py audio_path 57 Successfully load audio: ./example_audio/test.wav
...
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/test.wav, distance 0.0
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/knife_chopping.wav, distance 0.021805256605148315
2022-03-09 17:22:32,580 INFO main.py search_local_audio 131 search result http://testserver/data?audio_path=./example_audio/knife_cut_into_flesh.wav, distance 0.052762262523174286
...
2022-03-09 17:22:32,582 INFO main.py search_local_audio 135 Successfully searched similar audio!
2022-03-09 17:22:33,658 INFO main.py drop_tables 159 Successfully drop tables in Milvus and MySQL!
```
### 4. 预训练模型
以下是 PaddleSpeech 提供的预训练模型列表:
| 模型 | 采样率
| :--- | :---:
| ecapa_tdnn| 16000
| panns_cnn6| 32000
| panns_cnn10| 32000
| panns_cnn14| 32000

@ -126,8 +126,9 @@ async def search_local_audio(request: Request,
_, paths, distances = do_search(host, table_name, query_audio_path,
MILVUS_CLI, MYSQL_CLI)
names = []
for i in paths:
names.append(os.path.basename(i))
for path, dist in zip(paths, distances):
names.append(os.path.basename(path))
LOGGER.info(f"search result {path}, distance {dist}")
res = dict(zip(paths, zip(names, distances)))
# Sort results by distance metric, closest distances first
res = sorted(res.items(), key=lambda item: item[1][1])

@ -59,7 +59,7 @@ class MilvusHelper:
raise Exception(
f"There is no collection named:{collection_name}")
except Exception as e:
LOGGER.error(f"Failed to load data to Milvus: {e}")
LOGGER.error(f"Failed to set collection in Milvus: {e}")
sys.exit(1)
def has_collection(self, collection_name):
@ -67,7 +67,7 @@ class MilvusHelper:
try:
return utility.has_collection(collection_name)
except Exception as e:
LOGGER.error(f"Failed to load data to Milvus: {e}")
LOGGER.error(f"Failed to check state of collection in Milvus: {e}")
sys.exit(1)
def create_collection(self, collection_name):
@ -95,7 +95,7 @@ class MilvusHelper:
self.set_collection(collection_name)
return "OK"
except Exception as e:
LOGGER.error(f"Failed to load data to Milvus: {e}")
LOGGER.error(f"Failed to create collection in Milvus: {e}")
sys.exit(1)
def insert(self, collection_name, vectors):
@ -112,7 +112,7 @@ class MilvusHelper:
)
return ids
except Exception as e:
LOGGER.error(f"Failed to load data to Milvus: {e}")
LOGGER.error(f"Failed to insert data to Milvus: {e}")
sys.exit(1)
def create_index(self, collection_name):
@ -160,7 +160,6 @@ class MilvusHelper:
"nprobe": 16
}
}
# data = [vectors]
res = self.collection.search(
vectors,
anns_field="embedding",

@ -89,7 +89,6 @@ def test_data():
if __name__ == "__main__":
download_audio_data()
test_drop()
test_load()
test_count()
test_search()

Loading…
Cancel
Save