Merge pull request #1845 from Honei/r1.0.3

[R1.0][asr][server]add vector server
pull/1846/head
Hui Zhang 3 years ago committed by GitHub
commit 7f510da84c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -14,7 +14,7 @@ see [installation](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/doc
You can choose one way from easy, meduim and hard to install paddlespeech.
### 2. Prepare Input File
The input of this demo should be a WAV file(`.wav`), and the sample rate must be the same as the model.
The input of this cli demo should be a WAV file(`.wav`), and the sample rate must be the same as the model.
Here are sample files for this demo that can be downloaded:
```bash

@ -4,16 +4,16 @@
## 介绍
声纹识别是一项用计算机程序自动提取说话人特征的技术。
这个 demo 是一个给定音频文件提取说话人特征,它可以通过使用 `PaddleSpeech` 的单个命令或 python 中的几行代码来实现。
这个 demo 是一个给定音频文件提取说话人特征,它可以通过使用 `PaddleSpeech` 的单个命令或 python 中的几行代码来实现。
## 使用方法
### 1. 安装
请看[安装文档](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md)。
你可以从 easymediumhard 三中方式中选择一种方式安装。
你可以从easy mediumhard 三种方式中选择一种方式安装。
### 2. 准备输入
这个 demo 的输入应该是一个 WAV 文件(`.wav`),并且采样率必须与模型的采样率相同。
声纹cli demo 的输入应该是一个 WAV 文件(`.wav`),并且采样率必须与模型的采样率相同。
可以下载此 demo 的示例音频:
```bash

@ -28,6 +28,7 @@ def main(args):
handler = ASRWsAudioHandler(
args.server_ip,
args.port,
endpoint=args.endpoint,
punc_server_ip=args.punc_server_ip,
punc_server_port=args.punc_server_port)
loop = asyncio.get_event_loop()
@ -69,7 +70,11 @@ if __name__ == "__main__":
default=8091,
dest="punc_server_port",
help='Punctuation server port')
parser.add_argument(
"--endpoint",
type=str,
default="/paddlespeech/asr/streaming",
help="ASR websocket endpoint")
parser.add_argument(
"--wavfile",
action="store",

@ -272,7 +272,8 @@ class VectorExecutor(BaseExecutor):
model_type: str='ecapatdnn_voxceleb12',
sample_rate: int=16000,
cfg_path: Optional[os.PathLike]=None,
ckpt_path: Optional[os.PathLike]=None):
ckpt_path: Optional[os.PathLike]=None,
task=None):
"""Init the neural network from the model path
Args:
@ -284,8 +285,10 @@ class VectorExecutor(BaseExecutor):
Defaults to None.
ckpt_path (Optional[os.PathLike], optional): the pretrained model path, which is stored in the disk.
Defaults to None.
task (str, optional): the model task type
"""
# stage 0: avoid to init the mode again
self.task = task
if hasattr(self, "model"):
logger.info("Model has been initialized")
return
@ -434,6 +437,7 @@ class VectorExecutor(BaseExecutor):
if self.sample_rate != 16000 and self.sample_rate != 8000:
logger.error(
"invalid sample rate, please input --sr 8000 or --sr 16000")
logger.error(f"The model sample rate: {self.sample_rate}, the external sample rate is: {sample_rate}")
return False
if isinstance(audio_file, (str, os.PathLike)):

@ -63,3 +63,23 @@ paddlespeech_server start --config_file conf/tts_online_application.yaml
```
paddlespeech_client tts_online --server_ip 127.0.0.1 --port 8092 --input "您好,欢迎使用百度飞桨深度学习框架!" --output output.wav
```
## 声纹识别
### 启动声纹识别服务
```
paddlespeech_server start --config_file conf/vector_application.yaml
```
### 获取说话人音频声纹
```
paddlespeech_client vector --task spk --server_ip 127.0.0.1 --port 8090 --input 85236145389.wav
```
### 两个说话人音频声纹打分
```
paddlespeech_client vector --task score --server_ip 127.0.0.1 --port 8090 --enroll 123456789.wav --test 85236145389.wav
```

@ -35,7 +35,7 @@ from paddlespeech.server.utils.util import wav2base64
__all__ = [
'TTSClientExecutor', 'TTSOnlineClientExecutor', 'ASRClientExecutor',
'ASROnlineClientExecutor', 'CLSClientExecutor'
'ASROnlineClientExecutor', 'CLSClientExecutor', 'VectorClientExecutor'
]
@ -583,3 +583,108 @@ class TextClientExecutor(BaseExecutor):
response_dict = res.json()
punc_text = response_dict["result"]["punc_text"]
return punc_text
@cli_client_register(
name='paddlespeech_client.vector', description='visit the vector service')
class VectorClientExecutor(BaseExecutor):
def __init__(self):
super(VectorClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.vector', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8090, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='sentence to be process by text server.')
self.parser.add_argument(
'--task',
type=str,
default="spk",
choices=["spk", "score"],
help="The vector service task")
self.parser.add_argument(
"--enroll", type=str, default=None, help="The enroll audio")
self.parser.add_argument(
"--test", type=str, default=None, help="The test audio")
def execute(self, argv: List[str]) -> bool:
"""Execute the request from the argv.
Args:
argv (List): the request arguments
Returns:
str: the request flag
"""
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
task = args.task
try:
time_start = time.time()
res = self(
input=input_,
server_ip=server_ip,
port=port,
enroll_audio=args.enroll,
test_audio=args.test,
task=task)
time_end = time.time()
logger.info(f"The vector: {res}")
logger.info("Response time %f s." % (time_end - time_start))
return True
except Exception as e:
logger.error("Failed to extract vector.")
logger.error(e)
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8090,
audio_format: str="wav",
sample_rate: int=16000,
enroll_audio: str=None,
test_audio: str=None,
task="spk"):
"""
Python API to call text executor.
Args:
input (str): the request audio data
server_ip (str, optional): the server ip. Defaults to "127.0.0.1".
port (int, optional): the server port. Defaults to 8090.
audio_format (str, optional): audio format. Defaults to "wav".
sample_rate (str, optional): audio sample rate. Defaults to 16000.
enroll_audio (str, optional): enroll audio data. Defaults to None.
test_audio (str, optional): test audio data. Defaults to None.
task (str, optional): the task type, "spk" or "socre". Defaults to "spk"
Returns:
str: the audio embedding or score between enroll and test audio
"""
if task == "spk":
from paddlespeech.server.utils.audio_handler import VectorHttpHandler
logger.info("vector http client start")
logger.info(f"the input audio: {input}")
handler = VectorHttpHandler(server_ip=server_ip, port=port)
res = handler.run(input, audio_format, sample_rate)
return res
elif task == "score":
from paddlespeech.server.utils.audio_handler import VectorScoreHttpHandler
logger.info("vector score http client start")
logger.info(
f"enroll audio: {enroll_audio}, test audio: {test_audio}")
handler = VectorScoreHttpHandler(server_ip=server_ip, port=port)
res = handler.run(enroll_audio, test_audio, audio_format,
sample_rate)
logger.info(f"The vector score is: {res}")
else:
logger.error(f"Sorry, we have not support such task {task}")

@ -11,7 +11,7 @@ port: 8090
# protocol = ['websocket', 'http'] (only one can be selected).
# http only support offline engine type.
protocol: 'http'
engine_list: ['asr_python', 'tts_python', 'cls_python', 'text_python']
engine_list: ['asr_python', 'tts_python', 'cls_python', 'text_python', 'vector_python']
#################################################################################
@ -167,3 +167,14 @@ text_python:
ckpt_path: # [optional]
vocab_file: # [optional]
device: # set 'gpu:id' or 'cpu'
################################### Vector ######################################
################### Vector task: spk; engine_type: python #######################
vector_python:
task: spk
model_type: 'ecapatdnn_voxceleb12'
sample_rate: 16000
cfg_path: # [optional]
ckpt_path: # [optional]
device: # set 'gpu:id' or 'cpu'

@ -0,0 +1,32 @@
# This is the parameter configuration file for PaddleSpeech Serving.
#################################################################################
# SERVER SETTING #
#################################################################################
host: 0.0.0.0
port: 8090
# The task format in the engin_list is: <speech task>_<engine type>
# protocol = ['http'] (only one can be selected).
# http only support offline engine type.
protocol: 'http'
engine_list: ['vector_python']
#################################################################################
# ENGINE CONFIG #
#################################################################################
################################### Vector ######################################
################### Vector task: spk; engine_type: python #######################
vector_python:
task: spk
model_type: 'ecapatdnn_voxceleb12'
sample_rate: 16000
cfg_path: # [optional]
ckpt_path: # [optional]
device: # set 'gpu:id' or 'cpu'

@ -13,6 +13,7 @@
# limitations under the License.
import copy
import os
import time
from typing import Optional
import numpy as np
@ -153,6 +154,12 @@ class PaddleASRConnectionHanddler:
self.n_shift = self.preprocess_conf.process[0]['n_shift']
def extract_feat(self, samples):
# we compute the elapsed time of first char occuring
# and we record the start time at the first pcm sample arraving
# if self.first_char_occur_elapsed is not None:
# self.first_char_occur_elapsed = time.time()
if "deepspeech2online" in self.model_type:
# self.reamined_wav stores all the samples,
# include the original remained_wav and this package samples
@ -290,6 +297,7 @@ class PaddleASRConnectionHanddler:
self.chunk_num = 0
self.global_frame_offset = 0
self.result_transcripts = ['']
self.first_char_occur_elapsed = None
def decode(self, is_finished=False):
if "deepspeech2online" in self.model_type:

@ -49,5 +49,8 @@ class EngineFactory(object):
elif engine_name.lower() == 'text' and engine_type.lower() == 'python':
from paddlespeech.server.engine.text.python.text_engine import TextEngine
return TextEngine()
elif engine_name.lower() == 'vector' and engine_type.lower() == 'python':
from paddlespeech.server.engine.vector.python.vector_engine import VectorEngine
return VectorEngine()
else:
return None

@ -0,0 +1,200 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
from collections import OrderedDict
import numpy as np
import paddle
from paddleaudio.backends import load as load_audio
from paddleaudio.compliance.librosa import melspectrogram
from paddlespeech.cli.log import logger
from paddlespeech.cli.vector.infer import VectorExecutor
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.vector.io.batch import feature_normalize
class PaddleVectorConnectionHandler:
def __init__(self, vector_engine):
"""The PaddleSpeech Vector Server Connection Handler
This connection process every server request
Args:
vector_engine (VectorEngine): The Vector engine
"""
super().__init__()
logger.info(
"Create PaddleVectorConnectionHandler to process the vector request")
self.vector_engine = vector_engine
self.executor = self.vector_engine.executor
self.task = self.vector_engine.executor.task
self.model = self.vector_engine.executor.model
self.config = self.vector_engine.executor.config
self._inputs = OrderedDict()
self._outputs = OrderedDict()
@paddle.no_grad()
def run(self, audio_data, task="spk"):
"""The connection process the http request audio
Args:
audio_data (bytes): base64.b64decode
Returns:
str: the punctuation text
"""
logger.info(
f"start to extract the do vector {self.task} from the http request")
if self.task == "spk" and task == "spk":
embedding = self.extract_audio_embedding(audio_data)
return embedding
else:
logger.error(
"The request task is not matched with server model task")
logger.error(
f"The server model task is: {self.task}, but the request task is: {task}"
)
return np.array([
0.0,
])
@paddle.no_grad()
def get_enroll_test_score(self, enroll_audio, test_audio):
"""Get the enroll and test audio score
Args:
enroll_audio (str): the base64 format enroll audio
test_audio (str): the base64 format test audio
Returns:
float: the score between enroll and test audio
"""
logger.info("start to extract the enroll audio embedding")
enroll_emb = self.extract_audio_embedding(enroll_audio)
logger.info("start to extract the test audio embedding")
test_emb = self.extract_audio_embedding(test_audio)
logger.info(
"start to get the score between the enroll and test embedding")
score = self.executor.get_embeddings_score(enroll_emb, test_emb)
logger.info(f"get the enroll vs test score: {score}")
return score
@paddle.no_grad()
def extract_audio_embedding(self, audio: str, sample_rate: int=16000):
"""extract the audio embedding
Args:
audio (str): the audio data
sample_rate (int, optional): the audio sample rate. Defaults to 16000.
"""
# we can not reuse the cache io.BytesIO(audio) data,
# because the soundfile will change the io.BytesIO(audio) to the end
# thus we should convert the base64 string to io.BytesIO when we need the audio data
if not self.executor._check(io.BytesIO(audio), sample_rate):
logger.info("check the audio sample rate occurs error")
return np.array([0.0])
waveform, sr = load_audio(io.BytesIO(audio))
logger.info(f"load the audio sample points, shape is: {waveform.shape}")
# stage 2: get the audio feat
# Note: Now we only support fbank feature
try:
feats = melspectrogram(
x=waveform,
sr=self.config.sr,
n_mels=self.config.n_mels,
window_size=self.config.window_size,
hop_length=self.config.hop_size)
logger.info(f"extract the audio feats, shape is: {feats.shape}")
except Exception as e:
logger.info(f"feats occurs exception {e}")
sys.exit(-1)
feats = paddle.to_tensor(feats).unsqueeze(0)
# in inference period, the lengths is all one without padding
lengths = paddle.ones([1])
# stage 3: we do feature normalize,
# Now we assume that the feats must do normalize
feats = feature_normalize(feats, mean_norm=True, std_norm=False)
# stage 4: store the feats and length in the _inputs,
# which will be used in other function
logger.info(f"feats shape: {feats.shape}")
logger.info("audio extract the feats success")
logger.info("start to extract the audio embedding")
embedding = self.model.backbone(feats, lengths).squeeze().numpy()
logger.info(f"embedding size: {embedding.shape}")
return embedding
class VectorServerExecutor(VectorExecutor):
def __init__(self):
"""The wrapper for TextEcutor
"""
super().__init__()
pass
class VectorEngine(BaseEngine):
def __init__(self):
"""The Vector Engine
"""
super(VectorEngine, self).__init__()
logger.info("Create the VectorEngine Instance")
def init(self, config: dict):
"""Init the Vector Engine
Args:
config (dict): The server configuation
Returns:
bool: The engine instance flag
"""
logger.info("Init the vector engine")
try:
self.config = config
if self.config.device:
self.device = self.config.device
else:
self.device = paddle.get_device()
paddle.set_device(self.device)
logger.info(f"Vector Engine set the device: {self.device}")
except BaseException as e:
logger.error(
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
)
logger.error("Initialize Vector server engine Failed on device: %s."
% (self.device))
return False
self.executor = VectorServerExecutor()
self.executor._init_from_path(
model_type=config.model_type,
cfg_path=config.cfg_path,
ckpt_path=config.ckpt_path,
task=config.task)
logger.info("Init the Vector engine successfully")
return True

@ -21,7 +21,7 @@ from paddlespeech.server.restful.asr_api import router as asr_router
from paddlespeech.server.restful.cls_api import router as cls_router
from paddlespeech.server.restful.text_api import router as text_router
from paddlespeech.server.restful.tts_api import router as tts_router
from paddlespeech.server.restful.vector_api import router as vec_router
_router = APIRouter()
@ -43,6 +43,8 @@ def setup_router(api_list: List):
_router.include_router(cls_router)
elif api_name == 'text':
_router.include_router(text_router)
elif api_name.lower() == 'vector':
_router.include_router(vec_router)
else:
logger.error(
f"PaddleSpeech has not support such service: {api_name}")

@ -15,7 +15,10 @@ from typing import Optional
from pydantic import BaseModel
__all__ = ['ASRRequest', 'TTSRequest', 'CLSRequest']
__all__ = [
'ASRRequest', 'TTSRequest', 'CLSRequest', 'VectorRequest',
'VectorScoreRequest'
]
#****************************************************************************************/
@ -85,3 +88,40 @@ class CLSRequest(BaseModel):
#****************************************************************************************/
class TextRequest(BaseModel):
text: str
#****************************************************************************************/
#************************************ Vecotr request ************************************/
#****************************************************************************************/
class VectorRequest(BaseModel):
"""
request body example
{
"audio": "exSI6ICJlbiIsCgkgICAgInBvc2l0aW9uIjogImZhbHNlIgoJf...",
"task": "spk",
"audio_format": "wav",
"sample_rate": 16000,
}
"""
audio: str
task: str
audio_format: str
sample_rate: int
class VectorScoreRequest(BaseModel):
"""
request body example
{
"enroll_audio": "exSI6ICJlbiIsCgkgICAgInBvc2l0aW9uIjogImZhbHNlIgoJf...",
"test_audio": "exSI6ICJlbiIsCgkgICAgInBvc2l0aW9uIjogImZhbHNlIgoJf...",
"task": "score",
"audio_format": "wav",
"sample_rate": 16000,
}
"""
enroll_audio: str
test_audio: str
task: str
audio_format: str
sample_rate: int

@ -15,7 +15,10 @@ from typing import List
from pydantic import BaseModel
__all__ = ['ASRResponse', 'TTSResponse', 'CLSResponse']
__all__ = [
'ASRResponse', 'TTSResponse', 'CLSResponse', 'TextResponse',
'VectorResponse', 'VectorScoreResponse'
]
class Message(BaseModel):
@ -129,6 +132,11 @@ class CLSResponse(BaseModel):
result: CLSResult
#****************************************************************************************/
#************************************ Text response **************************************/
#****************************************************************************************/
class TextResult(BaseModel):
punc_text: str
@ -153,6 +161,59 @@ class TextResponse(BaseModel):
result: TextResult
#****************************************************************************************/
#************************************ Vector response **************************************/
#****************************************************************************************/
class VectorResult(BaseModel):
vec: list
class VectorResponse(BaseModel):
"""
response example
{
"success": true,
"code": 0,
"message": {
"description": "success"
},
"result": {
"vec": [1.0, 1.0]
}
}
"""
success: bool
code: int
message: Message
result: VectorResult
class VectorScoreResult(BaseModel):
score: float
class VectorScoreResponse(BaseModel):
"""
response example
{
"success": true,
"code": 0,
"message": {
"description": "success"
},
"result": {
"score": 1.0
}
}
"""
success: bool
code: int
message: Message
result: VectorScoreResult
#****************************************************************************************/
#********************************** Error response **************************************/
#****************************************************************************************/

@ -0,0 +1,151 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import traceback
from typing import Union
import numpy as np
from fastapi import APIRouter
from paddlespeech.cli.log import logger
from paddlespeech.server.engine.engine_pool import get_engine_pool
from paddlespeech.server.engine.vector.python.vector_engine import PaddleVectorConnectionHandler
from paddlespeech.server.restful.request import VectorRequest
from paddlespeech.server.restful.request import VectorScoreRequest
from paddlespeech.server.restful.response import ErrorResponse
from paddlespeech.server.restful.response import VectorResponse
from paddlespeech.server.restful.response import VectorScoreResponse
from paddlespeech.server.utils.errors import ErrorCode
from paddlespeech.server.utils.errors import failed_response
from paddlespeech.server.utils.exception import ServerBaseException
router = APIRouter()
@router.get('/paddlespeech/vector/help')
def help():
"""help
Returns:
json: The /paddlespeech/vector api response content
"""
response = {
"success": "True",
"code": 200,
"message": {
"global": "success"
},
"vector": [2.3, 3.5, 5.5, 6.2, 2.8, 1.2, 0.3, 3.6]
}
return response
@router.post(
"/paddlespeech/vector", response_model=Union[VectorResponse, ErrorResponse])
def vector(request_body: VectorRequest):
"""vector api
Args:
request_body (VectorRequest): the vector request body
Returns:
json: the vector response body
"""
try:
# 1. get the audio data
# the audio must be base64 format
audio_data = base64.b64decode(request_body.audio)
# 2. get single engine from engine pool
# and we use the vector_engine to create an connection handler to process the request
engine_pool = get_engine_pool()
vector_engine = engine_pool['vector']
connection_handler = PaddleVectorConnectionHandler(vector_engine)
# 3. we use the connection handler to process the audio
audio_vec = connection_handler.run(audio_data, request_body.task)
# 4. we need the result of the vector instance be numpy.ndarray
if not isinstance(audio_vec, np.ndarray):
logger.error(
f"the vector type is not numpy.array, that is: {type(audio_vec)}"
)
error_reponse = ErrorResponse()
error_reponse.message.description = f"the vector type is not numpy.array, that is: {type(audio_vec)}"
return error_reponse
response = {
"success": True,
"code": 200,
"message": {
"description": "success"
},
"result": {
"vec": audio_vec.tolist()
}
}
except ServerBaseException as e:
response = failed_response(e.error_code, e.msg)
except BaseException:
response = failed_response(ErrorCode.SERVER_UNKOWN_ERR)
traceback.print_exc()
return response
@router.post(
"/paddlespeech/vector/score",
response_model=Union[VectorScoreResponse, ErrorResponse])
def score(request_body: VectorScoreRequest):
"""vector api
Args:
request_body (VectorScoreRequest): the punctuation request body
Returns:
json: the punctuation response body
"""
try:
# 1. get the audio data
# the audio must be base64 format
enroll_data = base64.b64decode(request_body.enroll_audio)
test_data = base64.b64decode(request_body.test_audio)
# 2. get single engine from engine pool
# and we use the vector_engine to create an connection handler to process the request
engine_pool = get_engine_pool()
vector_engine = engine_pool['vector']
connection_handler = PaddleVectorConnectionHandler(vector_engine)
# 3. we use the connection handler to process the audio
score = connection_handler.get_enroll_test_score(enroll_data, test_data)
response = {
"success": True,
"code": 200,
"message": {
"description": "success"
},
"result": {
"score": score
}
}
except ServerBaseException as e:
response = failed_response(e.error_code, e.msg)
except BaseException:
response = failed_response(ErrorCode.SERVER_UNKOWN_ERR)
traceback.print_exc()
return response

@ -144,6 +144,7 @@ class ASRWsAudioHandler:
return ""
# 1. send websocket handshake protocal
start_time = time.time()
async with websockets.connect(self.url) as ws:
# 2. server has already received handshake protocal
# client start to send the command
@ -190,7 +191,14 @@ class ASRWsAudioHandler:
if self.punc_server:
msg["result"] = self.punc_server.run(msg["result"])
# 6. logging the final result and comptute the statstics
elapsed_time = time.time() - start_time
audio_info = soundfile.info(wavfile_path)
logger.info("client final receive msg={}".format(msg))
logger.info(
f"audio duration: {audio_info.duration}, elapsed time: {elapsed_time}, RTF={elapsed_time/audio_info.duration}"
)
result = msg
return result
@ -459,3 +467,96 @@ class TTSHttpHandler:
self.stream.stop_stream()
self.stream.close()
self.p.terminate()
class VectorHttpHandler:
def __init__(self, server_ip=None, port=None):
"""The Vector client http request
Args:
server_ip (str, optional): the http vector server ip. Defaults to "127.0.0.1".
port (int, optional): the http vector server port. Defaults to 8090.
"""
super().__init__()
self.server_ip = server_ip
self.port = port
if server_ip is None or port is None:
self.url = None
else:
self.url = 'http://' + self.server_ip + ":" + str(
self.port) + '/paddlespeech/vector'
def run(self, input, audio_format, sample_rate, task="spk"):
"""Call the http asr to process the audio
Args:
input (str): the audio file path
audio_format (str): the audio format
sample_rate (str): the audio sample rate
Returns:
list: the audio vector
"""
if self.url is None:
logger.error("No vector server, please input valid ip and port")
return ""
audio = wav2base64(input)
data = {
"audio": audio,
"task": task,
"audio_format": audio_format,
"sample_rate": sample_rate,
}
logger.info(self.url)
res = requests.post(url=self.url, data=json.dumps(data))
return res.json()
class VectorScoreHttpHandler:
def __init__(self, server_ip=None, port=None):
"""The Vector score client http request
Args:
server_ip (str, optional): the http vector server ip. Defaults to "127.0.0.1".
port (int, optional): the http vector server port. Defaults to 8090.
"""
super().__init__()
self.server_ip = server_ip
self.port = port
if server_ip is None or port is None:
self.url = None
else:
self.url = 'http://' + self.server_ip + ":" + str(
self.port) + '/paddlespeech/vector/score'
def run(self, enroll_audio, test_audio, audio_format, sample_rate):
"""Call the http asr to process the audio
Args:
input (str): the audio file path
audio_format (str): the audio format
sample_rate (str): the audio sample rate
Returns:
list: the audio vector
"""
if self.url is None:
logger.error("No vector server, please input valid ip and port")
return ""
enroll_audio = wav2base64(enroll_audio)
test_audio = wav2base64(test_audio)
data = {
"enroll_audio": enroll_audio,
"test_audio": test_audio,
"task": "score",
"audio_format": audio_format,
"sample_rate": sample_rate,
}
res = requests.post(url=self.url, data=json.dumps(data))
return res.json()

Loading…
Cancel
Save