commit
7f510da84c
@ -0,0 +1,32 @@
|
||||
# This is the parameter configuration file for PaddleSpeech Serving.
|
||||
|
||||
#################################################################################
|
||||
# SERVER SETTING #
|
||||
#################################################################################
|
||||
host: 0.0.0.0
|
||||
port: 8090
|
||||
|
||||
# The task format in the engin_list is: <speech task>_<engine type>
|
||||
# protocol = ['http'] (only one can be selected).
|
||||
# http only support offline engine type.
|
||||
protocol: 'http'
|
||||
engine_list: ['vector_python']
|
||||
|
||||
|
||||
#################################################################################
|
||||
# ENGINE CONFIG #
|
||||
#################################################################################
|
||||
|
||||
################################### Vector ######################################
|
||||
################### Vector task: spk; engine_type: python #######################
|
||||
vector_python:
|
||||
task: spk
|
||||
model_type: 'ecapatdnn_voxceleb12'
|
||||
sample_rate: 16000
|
||||
cfg_path: # [optional]
|
||||
ckpt_path: # [optional]
|
||||
device: # set 'gpu:id' or 'cpu'
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,200 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import io
|
||||
from collections import OrderedDict
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
|
||||
from paddleaudio.backends import load as load_audio
|
||||
from paddleaudio.compliance.librosa import melspectrogram
|
||||
from paddlespeech.cli.log import logger
|
||||
from paddlespeech.cli.vector.infer import VectorExecutor
|
||||
from paddlespeech.server.engine.base_engine import BaseEngine
|
||||
from paddlespeech.vector.io.batch import feature_normalize
|
||||
|
||||
|
||||
class PaddleVectorConnectionHandler:
|
||||
def __init__(self, vector_engine):
|
||||
"""The PaddleSpeech Vector Server Connection Handler
|
||||
This connection process every server request
|
||||
Args:
|
||||
vector_engine (VectorEngine): The Vector engine
|
||||
"""
|
||||
super().__init__()
|
||||
logger.info(
|
||||
"Create PaddleVectorConnectionHandler to process the vector request")
|
||||
self.vector_engine = vector_engine
|
||||
self.executor = self.vector_engine.executor
|
||||
self.task = self.vector_engine.executor.task
|
||||
self.model = self.vector_engine.executor.model
|
||||
self.config = self.vector_engine.executor.config
|
||||
|
||||
self._inputs = OrderedDict()
|
||||
self._outputs = OrderedDict()
|
||||
|
||||
@paddle.no_grad()
|
||||
def run(self, audio_data, task="spk"):
|
||||
"""The connection process the http request audio
|
||||
|
||||
Args:
|
||||
audio_data (bytes): base64.b64decode
|
||||
|
||||
Returns:
|
||||
str: the punctuation text
|
||||
"""
|
||||
logger.info(
|
||||
f"start to extract the do vector {self.task} from the http request")
|
||||
if self.task == "spk" and task == "spk":
|
||||
embedding = self.extract_audio_embedding(audio_data)
|
||||
return embedding
|
||||
else:
|
||||
logger.error(
|
||||
"The request task is not matched with server model task")
|
||||
logger.error(
|
||||
f"The server model task is: {self.task}, but the request task is: {task}"
|
||||
)
|
||||
|
||||
return np.array([
|
||||
0.0,
|
||||
])
|
||||
|
||||
@paddle.no_grad()
|
||||
def get_enroll_test_score(self, enroll_audio, test_audio):
|
||||
"""Get the enroll and test audio score
|
||||
|
||||
Args:
|
||||
enroll_audio (str): the base64 format enroll audio
|
||||
test_audio (str): the base64 format test audio
|
||||
|
||||
Returns:
|
||||
float: the score between enroll and test audio
|
||||
"""
|
||||
logger.info("start to extract the enroll audio embedding")
|
||||
enroll_emb = self.extract_audio_embedding(enroll_audio)
|
||||
|
||||
logger.info("start to extract the test audio embedding")
|
||||
test_emb = self.extract_audio_embedding(test_audio)
|
||||
|
||||
logger.info(
|
||||
"start to get the score between the enroll and test embedding")
|
||||
score = self.executor.get_embeddings_score(enroll_emb, test_emb)
|
||||
|
||||
logger.info(f"get the enroll vs test score: {score}")
|
||||
return score
|
||||
|
||||
@paddle.no_grad()
|
||||
def extract_audio_embedding(self, audio: str, sample_rate: int=16000):
|
||||
"""extract the audio embedding
|
||||
|
||||
Args:
|
||||
audio (str): the audio data
|
||||
sample_rate (int, optional): the audio sample rate. Defaults to 16000.
|
||||
"""
|
||||
# we can not reuse the cache io.BytesIO(audio) data,
|
||||
# because the soundfile will change the io.BytesIO(audio) to the end
|
||||
# thus we should convert the base64 string to io.BytesIO when we need the audio data
|
||||
if not self.executor._check(io.BytesIO(audio), sample_rate):
|
||||
logger.info("check the audio sample rate occurs error")
|
||||
return np.array([0.0])
|
||||
|
||||
waveform, sr = load_audio(io.BytesIO(audio))
|
||||
logger.info(f"load the audio sample points, shape is: {waveform.shape}")
|
||||
|
||||
# stage 2: get the audio feat
|
||||
# Note: Now we only support fbank feature
|
||||
try:
|
||||
feats = melspectrogram(
|
||||
x=waveform,
|
||||
sr=self.config.sr,
|
||||
n_mels=self.config.n_mels,
|
||||
window_size=self.config.window_size,
|
||||
hop_length=self.config.hop_size)
|
||||
logger.info(f"extract the audio feats, shape is: {feats.shape}")
|
||||
except Exception as e:
|
||||
logger.info(f"feats occurs exception {e}")
|
||||
sys.exit(-1)
|
||||
|
||||
feats = paddle.to_tensor(feats).unsqueeze(0)
|
||||
# in inference period, the lengths is all one without padding
|
||||
lengths = paddle.ones([1])
|
||||
|
||||
# stage 3: we do feature normalize,
|
||||
# Now we assume that the feats must do normalize
|
||||
feats = feature_normalize(feats, mean_norm=True, std_norm=False)
|
||||
|
||||
# stage 4: store the feats and length in the _inputs,
|
||||
# which will be used in other function
|
||||
logger.info(f"feats shape: {feats.shape}")
|
||||
logger.info("audio extract the feats success")
|
||||
|
||||
logger.info("start to extract the audio embedding")
|
||||
embedding = self.model.backbone(feats, lengths).squeeze().numpy()
|
||||
logger.info(f"embedding size: {embedding.shape}")
|
||||
|
||||
return embedding
|
||||
|
||||
|
||||
class VectorServerExecutor(VectorExecutor):
|
||||
def __init__(self):
|
||||
"""The wrapper for TextEcutor
|
||||
"""
|
||||
super().__init__()
|
||||
pass
|
||||
|
||||
|
||||
class VectorEngine(BaseEngine):
|
||||
def __init__(self):
|
||||
"""The Vector Engine
|
||||
"""
|
||||
super(VectorEngine, self).__init__()
|
||||
logger.info("Create the VectorEngine Instance")
|
||||
|
||||
def init(self, config: dict):
|
||||
"""Init the Vector Engine
|
||||
|
||||
Args:
|
||||
config (dict): The server configuation
|
||||
|
||||
Returns:
|
||||
bool: The engine instance flag
|
||||
"""
|
||||
logger.info("Init the vector engine")
|
||||
try:
|
||||
self.config = config
|
||||
if self.config.device:
|
||||
self.device = self.config.device
|
||||
else:
|
||||
self.device = paddle.get_device()
|
||||
|
||||
paddle.set_device(self.device)
|
||||
logger.info(f"Vector Engine set the device: {self.device}")
|
||||
except BaseException as e:
|
||||
logger.error(
|
||||
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
|
||||
)
|
||||
logger.error("Initialize Vector server engine Failed on device: %s."
|
||||
% (self.device))
|
||||
return False
|
||||
|
||||
self.executor = VectorServerExecutor()
|
||||
|
||||
self.executor._init_from_path(
|
||||
model_type=config.model_type,
|
||||
cfg_path=config.cfg_path,
|
||||
ckpt_path=config.ckpt_path,
|
||||
task=config.task)
|
||||
|
||||
logger.info("Init the Vector engine successfully")
|
||||
return True
|
@ -0,0 +1,151 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import base64
|
||||
import traceback
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
from fastapi import APIRouter
|
||||
|
||||
from paddlespeech.cli.log import logger
|
||||
from paddlespeech.server.engine.engine_pool import get_engine_pool
|
||||
from paddlespeech.server.engine.vector.python.vector_engine import PaddleVectorConnectionHandler
|
||||
from paddlespeech.server.restful.request import VectorRequest
|
||||
from paddlespeech.server.restful.request import VectorScoreRequest
|
||||
from paddlespeech.server.restful.response import ErrorResponse
|
||||
from paddlespeech.server.restful.response import VectorResponse
|
||||
from paddlespeech.server.restful.response import VectorScoreResponse
|
||||
from paddlespeech.server.utils.errors import ErrorCode
|
||||
from paddlespeech.server.utils.errors import failed_response
|
||||
from paddlespeech.server.utils.exception import ServerBaseException
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.get('/paddlespeech/vector/help')
|
||||
def help():
|
||||
"""help
|
||||
|
||||
Returns:
|
||||
json: The /paddlespeech/vector api response content
|
||||
"""
|
||||
response = {
|
||||
"success": "True",
|
||||
"code": 200,
|
||||
"message": {
|
||||
"global": "success"
|
||||
},
|
||||
"vector": [2.3, 3.5, 5.5, 6.2, 2.8, 1.2, 0.3, 3.6]
|
||||
}
|
||||
return response
|
||||
|
||||
|
||||
@router.post(
|
||||
"/paddlespeech/vector", response_model=Union[VectorResponse, ErrorResponse])
|
||||
def vector(request_body: VectorRequest):
|
||||
"""vector api
|
||||
|
||||
Args:
|
||||
request_body (VectorRequest): the vector request body
|
||||
|
||||
Returns:
|
||||
json: the vector response body
|
||||
"""
|
||||
try:
|
||||
# 1. get the audio data
|
||||
# the audio must be base64 format
|
||||
audio_data = base64.b64decode(request_body.audio)
|
||||
|
||||
# 2. get single engine from engine pool
|
||||
# and we use the vector_engine to create an connection handler to process the request
|
||||
engine_pool = get_engine_pool()
|
||||
vector_engine = engine_pool['vector']
|
||||
connection_handler = PaddleVectorConnectionHandler(vector_engine)
|
||||
|
||||
# 3. we use the connection handler to process the audio
|
||||
audio_vec = connection_handler.run(audio_data, request_body.task)
|
||||
|
||||
# 4. we need the result of the vector instance be numpy.ndarray
|
||||
if not isinstance(audio_vec, np.ndarray):
|
||||
logger.error(
|
||||
f"the vector type is not numpy.array, that is: {type(audio_vec)}"
|
||||
)
|
||||
error_reponse = ErrorResponse()
|
||||
error_reponse.message.description = f"the vector type is not numpy.array, that is: {type(audio_vec)}"
|
||||
return error_reponse
|
||||
|
||||
response = {
|
||||
"success": True,
|
||||
"code": 200,
|
||||
"message": {
|
||||
"description": "success"
|
||||
},
|
||||
"result": {
|
||||
"vec": audio_vec.tolist()
|
||||
}
|
||||
}
|
||||
|
||||
except ServerBaseException as e:
|
||||
response = failed_response(e.error_code, e.msg)
|
||||
except BaseException:
|
||||
response = failed_response(ErrorCode.SERVER_UNKOWN_ERR)
|
||||
traceback.print_exc()
|
||||
|
||||
return response
|
||||
|
||||
|
||||
@router.post(
|
||||
"/paddlespeech/vector/score",
|
||||
response_model=Union[VectorScoreResponse, ErrorResponse])
|
||||
def score(request_body: VectorScoreRequest):
|
||||
"""vector api
|
||||
|
||||
Args:
|
||||
request_body (VectorScoreRequest): the punctuation request body
|
||||
|
||||
Returns:
|
||||
json: the punctuation response body
|
||||
"""
|
||||
try:
|
||||
# 1. get the audio data
|
||||
# the audio must be base64 format
|
||||
enroll_data = base64.b64decode(request_body.enroll_audio)
|
||||
test_data = base64.b64decode(request_body.test_audio)
|
||||
|
||||
# 2. get single engine from engine pool
|
||||
# and we use the vector_engine to create an connection handler to process the request
|
||||
engine_pool = get_engine_pool()
|
||||
vector_engine = engine_pool['vector']
|
||||
connection_handler = PaddleVectorConnectionHandler(vector_engine)
|
||||
|
||||
# 3. we use the connection handler to process the audio
|
||||
score = connection_handler.get_enroll_test_score(enroll_data, test_data)
|
||||
|
||||
response = {
|
||||
"success": True,
|
||||
"code": 200,
|
||||
"message": {
|
||||
"description": "success"
|
||||
},
|
||||
"result": {
|
||||
"score": score
|
||||
}
|
||||
}
|
||||
|
||||
except ServerBaseException as e:
|
||||
response = failed_response(e.error_code, e.msg)
|
||||
except BaseException:
|
||||
response = failed_response(ErrorCode.SERVER_UNKOWN_ERR)
|
||||
traceback.print_exc()
|
||||
|
||||
return response
|
Loading…
Reference in new issue