parent
2d89c80e6f
commit
7db7eb8993
@ -0,0 +1,115 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import ast
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.nn.functional as F
|
||||
from paddle.io import BatchSampler
|
||||
from paddle.io import DataLoader
|
||||
from tqdm import tqdm
|
||||
|
||||
from paddleaudio.datasets.voxceleb import VoxCeleb1
|
||||
from paddleaudio.features.core import melspectrogram
|
||||
from paddleaudio.backends import load as load_audio
|
||||
from paddlespeech.vector.io.batch import feature_normalize
|
||||
from paddlespeech.s2t.utils.log import Log
|
||||
from paddlespeech.vector.models.ecapa_tdnn import EcapaTdnn
|
||||
from paddlespeech.vector.modules.sid_model import SpeakerIdetification
|
||||
from paddlespeech.vector.training.metrics import compute_eer
|
||||
from paddlespeech.vector.training.seeding import seed_everything
|
||||
|
||||
logger = Log(__name__).getlog()
|
||||
|
||||
# feat configuration
|
||||
cpu_feat_conf = {
|
||||
'n_mels': 80,
|
||||
'window_size': 400, #ms
|
||||
'hop_length': 160, #ms
|
||||
}
|
||||
|
||||
def extract_audio_embedding(args):
|
||||
# stage 0: set the training device, cpu or gpu
|
||||
paddle.set_device(args.device)
|
||||
# set the random seed, it is a must for multiprocess training
|
||||
seed_everything(args.seed)
|
||||
|
||||
# stage 1: build the dnn backbone model network
|
||||
##"channels": [1024, 1024, 1024, 1024, 3072],
|
||||
model_conf = {
|
||||
"input_size": 80,
|
||||
"channels": [512, 512, 512, 512, 1536],
|
||||
"kernel_sizes": [5, 3, 3, 3, 1],
|
||||
"dilations": [1, 2, 3, 4, 1],
|
||||
"attention_channels": 128,
|
||||
"lin_neurons": 192,
|
||||
}
|
||||
ecapa_tdnn = EcapaTdnn(**model_conf)
|
||||
|
||||
# stage 2: load the pre-trained model
|
||||
args.load_checkpoint = os.path.abspath(
|
||||
os.path.expanduser(args.load_checkpoint))
|
||||
|
||||
# load model checkpoint to sid model
|
||||
state_dict = paddle.load(
|
||||
os.path.join(args.load_checkpoint, 'model.pdparams'))
|
||||
model.set_state_dict(state_dict)
|
||||
logger.info(f'Checkpoint loaded from {args.load_checkpoint}')
|
||||
|
||||
# stage 3: we must set the model to eval mode
|
||||
model.eval()
|
||||
|
||||
# stage 4: read the audio data and extract the embedding
|
||||
waveform, sr = load_audio(args.audio_path)
|
||||
feat = melspectrogram(x=waveform, **cpu_feat_conf)
|
||||
feat = paddle.to_tensor(feat).unsqueeze(0)
|
||||
lengths = paddle.ones([1]) # in paddle inference model, the lengths is all one without padding
|
||||
feat = feature_normalize(feat, mean_norm=True, std_norm=False)
|
||||
embedding = ecapa_tdnn(feat, lengths
|
||||
).squeeze().numpy() # (1, emb_size, 1) -> (emb_size)
|
||||
|
||||
# stage 5: do global norm with external mean and std
|
||||
# todo
|
||||
return embedding
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# yapf: disable
|
||||
parser = argparse.ArgumentParser(__doc__)
|
||||
parser.add_argument('--device',
|
||||
choices=['cpu', 'gpu'],
|
||||
default="gpu",
|
||||
help="Select which device to train model, defaults to gpu.")
|
||||
parser.add_argument("--seed",
|
||||
default=0,
|
||||
type=int,
|
||||
help="random seed for paddle, numpy and python random package")
|
||||
parser.add_argument("--load-checkpoint",
|
||||
type=str,
|
||||
default='',
|
||||
help="Directory to load model checkpoint to contiune trainning.")
|
||||
parser.add_argument("--global-embedding-norm",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Apply global normalization on speaker embeddings.")
|
||||
parser.add_argument("--audio-path",
|
||||
default="./data/demo.wav",
|
||||
type=str,
|
||||
help="Single audio file path")
|
||||
args = parser.parse_args()
|
||||
# yapf: enable
|
||||
|
||||
extract_audio_embedding(args)
|
Loading…
Reference in new issue