parent
bb34e90398
commit
7db13ca9db
@ -0,0 +1,234 @@
|
|||||||
|
"""
|
||||||
|
Tune parameters for beam search decoder in Deep Speech 2.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import paddle.v2 as paddle
|
||||||
|
import distutils.util
|
||||||
|
import argparse
|
||||||
|
import gzip
|
||||||
|
from audio_data_utils import DataGenerator
|
||||||
|
from model import deep_speech2
|
||||||
|
from decoder import *
|
||||||
|
from error_rate import wer
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description='Parameters tuning script for ctc beam search decoder in Deep Speech 2.'
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--num_samples",
|
||||||
|
default=100,
|
||||||
|
type=int,
|
||||||
|
help="Number of samples for parameters tuning. (default: %(default)s)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--num_conv_layers",
|
||||||
|
default=2,
|
||||||
|
type=int,
|
||||||
|
help="Convolution layer number. (default: %(default)s)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--num_rnn_layers",
|
||||||
|
default=3,
|
||||||
|
type=int,
|
||||||
|
help="RNN layer number. (default: %(default)s)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn_layer_size",
|
||||||
|
default=512,
|
||||||
|
type=int,
|
||||||
|
help="RNN layer cell number. (default: %(default)s)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_gpu",
|
||||||
|
default=True,
|
||||||
|
type=distutils.util.strtobool,
|
||||||
|
help="Use gpu or not. (default: %(default)s)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--normalizer_manifest_path",
|
||||||
|
default='data/manifest.libri.train-clean-100',
|
||||||
|
type=str,
|
||||||
|
help="Manifest path for normalizer. (default: %(default)s)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode_manifest_path",
|
||||||
|
default='data/manifest.libri.test-100sample',
|
||||||
|
type=str,
|
||||||
|
help="Manifest path for decoding. (default: %(default)s)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_filepath",
|
||||||
|
default='./params.tar.gz',
|
||||||
|
type=str,
|
||||||
|
help="Model filepath. (default: %(default)s)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocab_filepath",
|
||||||
|
default='data/eng_vocab.txt',
|
||||||
|
type=str,
|
||||||
|
help="Vocabulary filepath. (default: %(default)s)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode_method",
|
||||||
|
default='beam_search_nproc',
|
||||||
|
type=str,
|
||||||
|
help="Method for decoding, beam_search or beam_search_nproc. (default: %(default)s)"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam_size",
|
||||||
|
default=500,
|
||||||
|
type=int,
|
||||||
|
help="Width for beam search decoding. (default: %(default)d)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--num_results_per_sample",
|
||||||
|
default=1,
|
||||||
|
type=int,
|
||||||
|
help="Number of outputs per sample in beam search. (default: %(default)d)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--language_model_path",
|
||||||
|
default="./data/1Billion.klm",
|
||||||
|
type=str,
|
||||||
|
help="Path for language model. (default: %(default)s)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--alpha_from",
|
||||||
|
default=0.0,
|
||||||
|
type=float,
|
||||||
|
help="Where alpha starts from, <= alpha_to. (default: %(default)f)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--alpha_stride",
|
||||||
|
default=0.001,
|
||||||
|
type=float,
|
||||||
|
help="Step length for varying alpha. (default: %(default)f)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--alpha_to",
|
||||||
|
default=0.01,
|
||||||
|
type=float,
|
||||||
|
help="Where alpha ends with, >= alpha_from. (default: %(default)f)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--beta_from",
|
||||||
|
default=0.0,
|
||||||
|
type=float,
|
||||||
|
help="Where beta starts from, <= beta_to. (default: %(default)f)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--beta_stride",
|
||||||
|
default=0.01,
|
||||||
|
type=float,
|
||||||
|
help="Step length for varying beta. (default: %(default)f)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--beta_to",
|
||||||
|
default=0.0,
|
||||||
|
type=float,
|
||||||
|
help="Where beta ends with, >= beta_from. (default: %(default)f)")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def tune():
|
||||||
|
"""
|
||||||
|
Tune parameters alpha and beta on one minibatch.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if not args.alpha_from <= args.alpha_to:
|
||||||
|
raise ValueError("alpha_from <= alpha_to doesn't satisfy!")
|
||||||
|
if not args.alpha_stride > 0:
|
||||||
|
raise ValueError("alpha_stride shouldn't be negative!")
|
||||||
|
|
||||||
|
if not args.beta_from <= args.beta_to:
|
||||||
|
raise ValueError("beta_from <= beta_to doesn't satisfy!")
|
||||||
|
if not args.beta_stride > 0:
|
||||||
|
raise ValueError("beta_stride shouldn't be negative!")
|
||||||
|
|
||||||
|
# initialize data generator
|
||||||
|
data_generator = DataGenerator(
|
||||||
|
vocab_filepath=args.vocab_filepath,
|
||||||
|
normalizer_manifest_path=args.normalizer_manifest_path,
|
||||||
|
normalizer_num_samples=200,
|
||||||
|
max_duration=20.0,
|
||||||
|
min_duration=0.0,
|
||||||
|
stride_ms=10,
|
||||||
|
window_ms=20)
|
||||||
|
|
||||||
|
# create network config
|
||||||
|
dict_size = data_generator.vocabulary_size()
|
||||||
|
vocab_list = data_generator.vocabulary_list()
|
||||||
|
audio_data = paddle.layer.data(
|
||||||
|
name="audio_spectrogram",
|
||||||
|
height=161,
|
||||||
|
width=2000,
|
||||||
|
type=paddle.data_type.dense_vector(322000))
|
||||||
|
text_data = paddle.layer.data(
|
||||||
|
name="transcript_text",
|
||||||
|
type=paddle.data_type.integer_value_sequence(dict_size))
|
||||||
|
output_probs = deep_speech2(
|
||||||
|
audio_data=audio_data,
|
||||||
|
text_data=text_data,
|
||||||
|
dict_size=dict_size,
|
||||||
|
num_conv_layers=args.num_conv_layers,
|
||||||
|
num_rnn_layers=args.num_rnn_layers,
|
||||||
|
rnn_size=args.rnn_layer_size,
|
||||||
|
is_inference=True)
|
||||||
|
|
||||||
|
# load parameters
|
||||||
|
parameters = paddle.parameters.Parameters.from_tar(
|
||||||
|
gzip.open(args.model_filepath))
|
||||||
|
|
||||||
|
# prepare infer data
|
||||||
|
feeding = data_generator.data_name_feeding()
|
||||||
|
test_batch_reader = data_generator.batch_reader_creator(
|
||||||
|
manifest_path=args.decode_manifest_path,
|
||||||
|
batch_size=args.num_samples,
|
||||||
|
padding_to=2000,
|
||||||
|
flatten=True,
|
||||||
|
sort_by_duration=False,
|
||||||
|
shuffle=False)
|
||||||
|
infer_data = test_batch_reader().next()
|
||||||
|
|
||||||
|
# run inference
|
||||||
|
infer_results = paddle.infer(
|
||||||
|
output_layer=output_probs, parameters=parameters, input=infer_data)
|
||||||
|
num_steps = len(infer_results) / len(infer_data)
|
||||||
|
probs_split = [
|
||||||
|
infer_results[i * num_steps:(i + 1) * num_steps]
|
||||||
|
for i in xrange(0, len(infer_data))
|
||||||
|
]
|
||||||
|
|
||||||
|
cand_alpha = np.arange(args.alpha_from, args.alpha_to + args.alpha_stride,
|
||||||
|
args.alpha_stride)
|
||||||
|
cand_beta = np.arange(args.beta_from, args.beta_to + args.beta_stride,
|
||||||
|
args.beta_stride)
|
||||||
|
params_grid = [(alpha, beta) for alpha in cand_alpha for beta in cand_beta]
|
||||||
|
## tune parameters in loop
|
||||||
|
for (alpha, beta) in params_grid:
|
||||||
|
wer_sum, wer_counter = 0, 0
|
||||||
|
ext_scorer = Scorer(alpha, beta, args.language_model_path)
|
||||||
|
# beam search decode
|
||||||
|
if args.decode_method == "beam_search":
|
||||||
|
for i, probs in enumerate(probs_split):
|
||||||
|
target_transcription = ''.join(
|
||||||
|
[vocab_list[index] for index in infer_data[i][1]])
|
||||||
|
beam_search_result = ctc_beam_search_decoder(
|
||||||
|
probs_seq=probs,
|
||||||
|
vocabulary=vocab_list,
|
||||||
|
beam_size=args.beam_size,
|
||||||
|
ext_scoring_func=ext_scorer,
|
||||||
|
blank_id=len(vocab_list))
|
||||||
|
wer_sum += wer(target_transcription, beam_search_result[0][1])
|
||||||
|
wer_counter += 1
|
||||||
|
# beam search using multiple processes
|
||||||
|
elif args.decode_method == "beam_search_nproc":
|
||||||
|
beam_search_nproc_results = ctc_beam_search_decoder_nproc(
|
||||||
|
probs_split=probs_split,
|
||||||
|
vocabulary=vocab_list,
|
||||||
|
beam_size=args.beam_size,
|
||||||
|
ext_scoring_func=ext_scorer,
|
||||||
|
blank_id=len(vocab_list),
|
||||||
|
num_processes=1)
|
||||||
|
for i, beam_search_result in enumerate(beam_search_nproc_results):
|
||||||
|
target_transcription = ''.join(
|
||||||
|
[vocab_list[index] for index in infer_data[i][1]])
|
||||||
|
wer_sum += wer(target_transcription, beam_search_result[0][1])
|
||||||
|
wer_counter += 1
|
||||||
|
else:
|
||||||
|
raise ValueError("Decoding method [%s] is not supported." % method)
|
||||||
|
|
||||||
|
print("alpha = %f\tbeta = %f\tWER = %f" %
|
||||||
|
(alpha, beta, wer_sum / wer_counter))
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
|
||||||
|
tune()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
Reference in new issue