|
|
|
@ -108,11 +108,11 @@ class MultiHeadAttention(nn.Layer):
|
|
|
|
|
n_batch, n_ctx, n_state = q.shape
|
|
|
|
|
scale = (n_state // self.n_head)**-0.25
|
|
|
|
|
q = paddle.transpose(
|
|
|
|
|
q.view(*q.shape[:2], self.n_head, -1), (0, 2, 1, 3)) * scale
|
|
|
|
|
q.reshape([*q.shape[:2], self.n_head, -1]), (0, 2, 1, 3)) * scale
|
|
|
|
|
k = paddle.transpose(
|
|
|
|
|
k.view(*k.shape[:2], self.n_head, -1), (0, 2, 3, 1)) * scale
|
|
|
|
|
k.reshape([*k.shape[:2], self.n_head, -1]), (0, 2, 3, 1)) * scale
|
|
|
|
|
v = paddle.transpose(
|
|
|
|
|
v.view(*v.shape[:2], self.n_head, -1), (0, 2, 1, 3))
|
|
|
|
|
v.reshape([*v.shape[:2], self.n_head, -1]), (0, 2, 1, 3))
|
|
|
|
|
|
|
|
|
|
qk = q @ k
|
|
|
|
|
if mask is not None:
|
|
|
|
@ -822,7 +822,7 @@ class BeamSearchDecoder(TokenDecoder):
|
|
|
|
|
if self.finished_sequences is None: # for the first update
|
|
|
|
|
self.finished_sequences = [{} for _ in range(batch_size)]
|
|
|
|
|
|
|
|
|
|
logprobs = F.log_softmax(logits, axis=-1, dtype=paddle.float32)
|
|
|
|
|
logprobs = F.log_softmax(logits, axis=-1, dtype='float32')
|
|
|
|
|
next_tokens, source_indices, finished_sequences = [], [], []
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
|
scores, sources, finished = {}, {}, {}
|
|
|
|
@ -834,8 +834,8 @@ class BeamSearchDecoder(TokenDecoder):
|
|
|
|
|
logprob, token = paddle.topk(
|
|
|
|
|
logprobs[idx], k=self.beam_size + 1)
|
|
|
|
|
for logprob, token in zip(logprob, token):
|
|
|
|
|
new_logprob = (sum_logprobs[idx] + logprob).tolist()[0]
|
|
|
|
|
sequence = tuple(prefix + [token.tolist()[0]])
|
|
|
|
|
new_logprob = sum_logprobs[idx] + logprob
|
|
|
|
|
sequence = tuple(prefix + [token])
|
|
|
|
|
scores[sequence] = new_logprob
|
|
|
|
|
sources[sequence] = idx
|
|
|
|
|
|
|
|
|
@ -968,7 +968,7 @@ class ApplyTimestampRules(LogitFilter):
|
|
|
|
|
logits[:, last_allowed + 1:] = -np.inf
|
|
|
|
|
|
|
|
|
|
# if sum of probability over timestamps is above any other token, sample timestamp
|
|
|
|
|
logprobs = F.log_softmax(logits, axis=-1, dtype=paddle.float32)
|
|
|
|
|
logprobs = F.log_softmax(logits, axis=-1, dtype='float32')
|
|
|
|
|
for k in range(tokens.shape[0]):
|
|
|
|
|
timestamp_logprob = paddle.logsumexp(
|
|
|
|
|
logprobs[k, self.tokenizer.timestamp_begin:], axis=-1)
|
|
|
|
@ -1145,6 +1145,7 @@ class DecodingTask:
|
|
|
|
|
sum_logprobs: paddle.Tensor = paddle.zeros(
|
|
|
|
|
paddle.to_tensor(n_batch), dtype=paddle.float32)
|
|
|
|
|
no_speech_probs = [np.nan] * n_batch
|
|
|
|
|
print(sum_logprobs)
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
for i in range(self.sample_len):
|
|
|
|
|