From 7d6e889fe103b44a7152faef27aa8d37b24ff2fd Mon Sep 17 00:00:00 2001 From: yinfan98 <1106310035@qq.com> Date: Tue, 12 Nov 2024 02:39:09 +0800 Subject: [PATCH] fix whisper at Paddle 3.0 --- paddlespeech/__init__.py | 4 ---- paddlespeech/s2t/models/whisper/whipser.py | 15 ++++++++------- 2 files changed, 8 insertions(+), 11 deletions(-) diff --git a/paddlespeech/__init__.py b/paddlespeech/__init__.py index 969d189f5..6c7e75c1f 100644 --- a/paddlespeech/__init__.py +++ b/paddlespeech/__init__.py @@ -13,7 +13,3 @@ # limitations under the License. import _locale _locale._getdefaultlocale = (lambda *args: ['en_US', 'utf8']) - -__version__ = '0.0.0' - -__commit__ = '9cf8c1985a98bb380c183116123672976bdfe5c9' diff --git a/paddlespeech/s2t/models/whisper/whipser.py b/paddlespeech/s2t/models/whisper/whipser.py index a28013e4b..583bb8209 100644 --- a/paddlespeech/s2t/models/whisper/whipser.py +++ b/paddlespeech/s2t/models/whisper/whipser.py @@ -108,11 +108,11 @@ class MultiHeadAttention(nn.Layer): n_batch, n_ctx, n_state = q.shape scale = (n_state // self.n_head)**-0.25 q = paddle.transpose( - q.view(*q.shape[:2], self.n_head, -1), (0, 2, 1, 3)) * scale + q.reshape([*q.shape[:2], self.n_head, -1]), (0, 2, 1, 3)) * scale k = paddle.transpose( - k.view(*k.shape[:2], self.n_head, -1), (0, 2, 3, 1)) * scale + k.reshape([*k.shape[:2], self.n_head, -1]), (0, 2, 3, 1)) * scale v = paddle.transpose( - v.view(*v.shape[:2], self.n_head, -1), (0, 2, 1, 3)) + v.reshape([*v.shape[:2], self.n_head, -1]), (0, 2, 1, 3)) qk = q @ k if mask is not None: @@ -822,7 +822,7 @@ class BeamSearchDecoder(TokenDecoder): if self.finished_sequences is None: # for the first update self.finished_sequences = [{} for _ in range(batch_size)] - logprobs = F.log_softmax(logits, axis=-1, dtype=paddle.float32) + logprobs = F.log_softmax(logits, axis=-1, dtype='float32') next_tokens, source_indices, finished_sequences = [], [], [] for i in range(batch_size): scores, sources, finished = {}, {}, {} @@ -834,8 +834,8 @@ class BeamSearchDecoder(TokenDecoder): logprob, token = paddle.topk( logprobs[idx], k=self.beam_size + 1) for logprob, token in zip(logprob, token): - new_logprob = (sum_logprobs[idx] + logprob).tolist()[0] - sequence = tuple(prefix + [token.tolist()[0]]) + new_logprob = sum_logprobs[idx] + logprob + sequence = tuple(prefix + [token]) scores[sequence] = new_logprob sources[sequence] = idx @@ -968,7 +968,7 @@ class ApplyTimestampRules(LogitFilter): logits[:, last_allowed + 1:] = -np.inf # if sum of probability over timestamps is above any other token, sample timestamp - logprobs = F.log_softmax(logits, axis=-1, dtype=paddle.float32) + logprobs = F.log_softmax(logits, axis=-1, dtype='float32') for k in range(tokens.shape[0]): timestamp_logprob = paddle.logsumexp( logprobs[k, self.tokenizer.timestamp_begin:], axis=-1) @@ -1145,6 +1145,7 @@ class DecodingTask: sum_logprobs: paddle.Tensor = paddle.zeros( paddle.to_tensor(n_batch), dtype=paddle.float32) no_speech_probs = [np.nan] * n_batch + print(sum_logprobs) try: for i in range(self.sample_len):